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Discrete Gaussian distribution is an important ingredient in the provable security of lattice-based
cryptosystems. It was first employed by Micciancio and Regev (2007) in order to improve the hardness
of Ajtai (1996)’s SIS problem by reducing the gaps in the approximated lattice problems. The technique
was then widely adopted by subsequent lattice-based works to obtain provable security, for example,
the learning with error (LWE) and ring learning with error (RLWE) problems. This discrete distribution
behaves in a similar fashion as the continuous Gaussian, but with a discrete lattice support. In this
section, 1 we will discuss some essential properties of discrete Gaussian distribution and how it is used
to simplify and strengthen the hardness proof of SIS.

0.1 Discrete Gaussian distribution

We start by discussing some terms and intuitions about the better-understood continuous Gaussian dis-
tribution. A Gaussian function is a continuous function of the form

f(x) = a · exp

(
− (x− c)2

2σ2

)
.

The mostly common Gaussian function is the probability density function of the Gaussian distribution.
For simplicity, we work with the case when a = 1, so we can define the Gaussian measure in R asGaussian

measure
ρσ,c(x) = exp

(
− (x− c)2

2σ2

)
.

Another algebraic expression of the Gaussian measure is by using a scale parameter s =
√

2πσ. Sub-
stitute σ in the above equation and generalize the Gaussian measure to higher dimensional space Rn,
we get

ρs,c(x) = exp

(
−−π||x− c||2

s2

)
. (1)

Integrating the measure over Rn, the total measure is2∫
x∈Rn

ρs,c(x) dx = sn

and hence we can define the n-dimensional (continuous) GaussianGaussian PDF probability density function (PDF)
as

Ds,c(x) =
ρs,c(x)

sn
. (2)

This is just the PDF of the Gaussian distribution that we know from probability theory. The expected
squared distance from a Gaussian variable x ∈ Rn to the distribution center c (i.e., the variance of x) is

E
[
||x− c||2

]
= σ2 =

ns2

2π
.

Geometrically, most of the Gaussian samples lie in the n-dimensional ball centered at c with radius
s
√
n/2π.

Equation (1) and Equation (2) would still make sense if x is a discrete lattice vector. In addition,
a lattice L is a countable set, so the total Gaussian measure and the Gaussian PDF over the lattice are
expressed slightly differently

ρs,c(L) =
∑
x∈L

ρs,c(x)

Ds,c(L) =
ρs,c(L)

sn
.

Hence, we can define the discrete Gaussian distributionDiscrete
Gaussian

over the lattice L for all lattice vectors x ∈ L
as

DL,s,c(x) =
Ds,c(x)

Ds,c(L)
=
ρs,c(x)

ρs,c(L)
.

1This section is part of the work A Tutorial Introduction to Lattice-based Cryptography and Homomorphic
Encryption by the authors Yang Li, Kee Siong Ng, Michael Purcell from the School of Computing, Australian
National University @2022.

2The total measure is not 1 because the coefficient a in the Gaussian function is ignored.
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This can also be interpreted as the probability of x conditioning on the fact that it is a lattice vector.
The numerator is the probability of x being a lattice vector and follows a Gaussian distribution. The
denominator is the probability of an arbitrary Gaussian random variable in Rn takes on a value of a
lattice vector in L.

The discrete Gaussian distribution is commonly used nowadays to introduce randomness in the proof
of lattice problems and lattice-based cryptosystems. Unlike a uniform distribution over a space (e.g.,
the way uniformity was proved in Ajtai’s SIVPγ to SIS problem), Gaussian distribution does not have
sharp boundaries, which is useful when smoothing a distribution over a space. More precisely, given
a Gaussian distribution ρs,c(s) whose center is a lattice point (i.e., c ∈ L), if random samples from
this distribution are taken modulo the lattice fundamental region, the resulting samples will induce a
distribution within the fundamental region. Whether or not such a distribution is close to the uniform
distribution depends on the scale s of the Gaussian distribution. Obviously, the larger s is, the closer the
induced distribution is to uniform.

To give a quantitative threshold on how large s needs to be, Micciancio and Regev (2007) introduced
the smoothing parameter. As the name suggestes, the purpose of this parameter is to measure the
minimum Gaussian noise magnitude, so that if the noise is added to a lattice Zn, the lattice is “blured”
to almost a uniform distribution over Rn. It is, however, formally defined in terms of the Gaussian
measure on the dual lattice. For the rest of this section, we assume ε(n) > 0 (or just ε > 0 if the context
is clear) is a negligible function of the space dimension n.
Definition 0.1.1. The smoothing parameterSmoothing

parameter
of an n-dimensional lattice L, denoted ηε(L), is the small-

est s such that the Gaussian measure ρ1/s(L∗ \ {0}) ≤ ε.

In other words, the Gaussian measure gives almost all weights to the origin in the dual lattice.
Note ρ1/s(L∗ \ {0}) is a well-defined decreasing function of s with the range (0,∞). More precisely,
lims→∞ ρ1/s(L

∗ \ {0}) = 0 because when s → ∞ its inverse 1
s → 0, which implies the Gaussian

measure puts almost all weights on 0. Conversely, lims→0 ρ1/s(L
∗ \ {0}) =∞.

Next, we relate the smoothing parameter to two standard lattice quantities. We state the results and
the intuitions without proving them.

Lemma 0.1.2.λ1(L∗) The smoothing parameter of an n-dimensional lattice L satisfies ηε(L) ≤
√
n

λ1(L∗) .

It is not difficult to see this inverse relationship between ηε(L) and λ1(L∗). By intuition, the smaller
λ1(L) is the smaller ηε(L) needs to be and vice versa. As explained in the previous section, λ1(L)
and λ1(L∗) are in an inverse relationship. So the larger λ1(L∗) is the smaller λ1(L) is which requires
a smaller ηε(L). The following lemma relates the smoothing parameter to the successive minima of a
lattice.
Lemma 0.1.3.λn(L) The smoothing parameter of an n-dimensional lattice L satisfies

ηε(L) ≤
√

ln(2n(1 + 1/ε))

π
· λn(L).

0.2 Fourier transform of discrete Gaussian distribution

So far, we have defined the discrete Gaussian distribution and the smoothing parameter, and how they are
essential for sampling random lattice noise. In this subsection, we will state the theorems that guarantee
the uniformity of the discrete Gaussian when its scale is at least as large as the smoothing parameter and
its similarity to the continuous Gaussian distribution. We also include some key mathematical tools to
prove these results, including the Fourier transform of the Gaussian measure and the Poisson summation
formula. Many of these results are taken from the lecture notes The Gaussians Distribution by Daniele
Micciancio for the course Lattice Algorithms and Applications, Winter 2016.

We start this subsection by stating two key properties of Gaussian distribution. The reader can safely
skip the rest of this subsection if the proofs of these properties are not essential. Recall that any vector
t ∈ Rn in the span of a lattice L is uniquely identifiable by a lattice vector v and a (translation of) vector
w ∈ F in the lattice fundamental domain F . This gives rise to a way of reducing an arbitrary vector
in Rn to a vector within F by taking w = t mod F the vector modulo the fundamental domain. The
next lemma addresses the near uniformity of the distribution over F induced by applying this modulo
operation.
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Lemma 0.2.1.Near uniformity Let L be an n-dimensional lattice and Ds,c be a Gaussian distribution with arbitrary
scale s ≥ ηε(L) and center c ∈ Rn, the statistical distance between Ds,c mod F and a uniform
distribution U(F ) over the fundamental region F is

∆(Ds,c mod F,U(F )) ≤ ε

2
.

It can be proved that for s > 0 the statistical distance ∆ ≤ ρ1/s(L
∗ \ {0}). The lemma then

follows since the Gaussian’s scale is at least as large as the smoothing parameter. We do not go through
the proof here (see (Micciancio and Regev, 2007) Lemma 4.1). It uses the Fourier transform of the
Gaussian function and the properties of the discrete Gaussian described before.

The next lemma proves a similar behaviour of the discrete and continuous Gaussian distributions
when the scale of discrete Gaussian is sufficiently large.

Lemma 0.2.2.Similar to
continuous

Gaussian

Let DL,s,c be a discrete Gaussian distribution over an n-dimensional lattice L with
arbitrary scale s ≥ 2ηε(L) and center c ∈ Rn. For 0 < ε < 1, the following are satisfied

∣∣∣∣Ex∼DL,s,c [x− c]
∣∣∣∣2 ≤ ( ε

1− ε

)2

s2n,

Ex∼DL,s,c

[
||x− c||2

]
≤
(

1

2π
+

ε

1− ε

)2

s2n.

The first inequality suggests that on expectation the random samples from DL,s,c are close to the
discrete Gaussian center, with the distance at most s

√
n. It ensures that if the discrete Gaussian is

centered at the origin, then the lattice vectors sampled from this distribution will have small norms. The
second inequality is consistent with the continuous Gaussian’s variance (i.e., ns

2

2π ) as discussed in the
previouse subsection.

According to its definition, the Gaussian measure over Rn is integrable, that is,
∫
x∈Rn ρs,c(x) dx =

sn <∞, so it has the Fourier transformFourier
transform

ρ̂s,c(y) =

∫
x∈Rn

ρs,c(x)e−2πi〈x·y〉 dx. (3)

This is the most common convention of the Fourier transform of an integrable function. The Fourier
transform of the Gaussian is important for proving the Poisson summation formula as well as proving
some properties of the discrete Gaussian distribution. It has several important properties, the most
important one is that the Fourier transform of the Gaussian measure is itself. We state the result below
for a Gaussian measure centered at the origin.

Lemma 0.2.3. The Gaussian function centered at the origin ρs(x) = e−π||x||
2/s2 equals its Fourier

transform times a scaling factor, that is, ρs(x) = snρ̂s(x).

In the special case when s = 1, the lemma states that the Gaussian function is its own Fourier
transform. We go through the proof here in order to get familiar with the Fourier transform of Gaussian
functions.

Proof. We first prove the equality for 1 dimensional space R. This can be done by substituting the
Gaussian function into the integral of Fourier transform

ρ̂s(y) =

∫
x∈R

ρs(x)e−2πixy dx

=

∫
x∈R

e−πx
2/s2e−2πixy dx

=

∫
x∈R

e−π(x
2/s2−2ixy) dx
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Making the exponent a complete square and taking the y term out of the integral, it becomes

= e−πy
2s2
∫
x∈R

e−π(x+iys
2)2/s2 dx

= ρs(y)

∫
x∈R+iys2

ρs(x) dx

= ρs(y)

∫
x∈R

ρs(x) dx

= ρs(y)s.

The second last equality is by Cauchy’s Theorem and the last equality is just the total integral of the
Gaussian measure over R. Now we can prove the general case in Rn using the above result by integrating
each term in the vectors x and y

ρ̂s(y) =

∫
x∈Rn

ρs(x)e−2πi〈x,y〉 dx

=

∫
x∈Rn

n∏
k=1

e−πx
2
k/s

2

e−2πixkyk dx

=

n∏
k=1

∫
xk∈R

e−πx
2
k/s

2

e−2πixkyk dxk

=

n∏
k=1

ρ̂s(yk)

=

n∏
k=1

sρs(yk)

= snρs(y).

The third equality is by the property of integrating exponential functions. The second last equality is by
by the result in the 1-dimensional space.

The following lemma states another three important properties of the Fourier transform of integrable
functions, not necessarily just the Gaussian function. It explicitly tells us how a function’s Fourier
transform changes when the function’s input is translated or linearly transformed by a non-singular
matrix. These are particularly important for our study of the discrete Gaussian distribution, as they
allow us to shift back to the standard discrete Gaussian distribution DL, that is, DL,s,c where the scale
s = 1 and the center c = 0. We will state the lemma without proving it, as the proofs are relatively
straightforward by writing out the full algebraic forms of the Fourier transform and Gaussian function.
Lemma 0.2.4. For any integrable function f(x) in the n-dimensional space Rn, the following are
satisfied:

1. For a non-singular matrixM , if the function h(Mx) = f(x) then its Fourier transform ĥ(y) =

det(M)f̂(MT )y.

2. If h(x) = f(x + v), then its Fourier transform ĥ(y) = f̂(y) · e2πi〈y,v〉.

3. If h(x) = f(x) · e2πi〈x,v〉, then its Fourier transform ĥ(y) = f̂(y − v).

It follows from this lemma an important mathematical result, the Poisson summation formula .
For our purpose, we only state the formula for arbitrary lattices. The formula relates the sum of an
integrable function over a lattice to the sum of its Fourier transform over the dual lattice. This in return
entails properties of the Gaussian measure over lattices.
Lemma 0.2.5.Poisson

summation
formula

For any n-dimensional lattice L and an integrable function f of L, it satisfies∑
x∈L

f(x) = det(L∗)
∑
y∈L∗

f̂(y). (4)
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A special case of the Poisson summation formula is when f is the Gaussian function. It implies that
the total Gaussian measure over a lattice L equals the total Gaussian measure over its dual multiplies
the dual determinant, that is,

ρs,c(L) = det(L∗)ρ̂s,c(L∗) or
ρ̂s,c(L∗) = det(L)ρs,c(L).

An important application of the Poisson summation formula in this context is the statement that the
Gaussian measure of a lattice is maximized when centering at a lattice point.
Lemma 0.2.6. For an n-dimensional lattice L, the Gaussian measure ρs,c(x) with the scale s > 0 and
center c ∈ Rn satisfies ρs,c(x) ≤ ρs(x).

Proof. The key of the proof is shifting the Gaussian measure ρs,c(x) to the zero centered Gaussian
ρs(x), then use the property that a lattice vector and a dual lattice vector has an integer dot product.

ρs,c(L) = det(L∗)ρ̂s,c(L∗)

= det(L∗)
∑
y∈L∗

ρ̂s,c(y)

= det(L∗)
∑
y∈L∗

e2πi〈−c,y〉ρ̂s(y)

≤ det(L∗)
∑
y∈L∗

ρ̂s(y)

= ρs(L).

The third equality is by the second point of Lemma 0.2.4 and the equality ρ̂s,c(y) = ρ̂s(y +−c). The
inequality is due to the fact that e2πi〈−c,y〉 ≤ 1 and the maximum is obtained when the dot product
〈−c,y〉 is an integer, which requires the Gaussian center c to be a lattice point in L.

0.3 Discrete Gaussian for provable security

In this subsection, we revisit the hardness proof of Ajtai’s short integer solution (SIS) problem, but use
the discrete Gaussian tool to reduce the gaps of the hard lattice problems. Recall that SIS is parameter-
ized by a modulus q, number of linearly independent vectors m and a norm bound β. These parameters
are often functions of the security parameter nwhen building a cryptosystem based on SIS. The purpose
of SIS is to find a short integer vector x ∈ Zm such that

• ||x|| ≤ β and
• Ax = 0 ∈ Znq for an arbitrary integer matrix A ∈ Zn×mq .

A guarantee of an SIS solution was stated in Lemma 5.2 in (Micciancio and Regev, 2007) with the
parameter constraint β(n) ≥

√
mqn/m.

Similar to Ajtai’s proof, Micciancio and Regev (2007) also introduced an intermediate lattice prob-
lem - incremental guaranteed distance decoding - for a simple reduction to SIS. The standard lattice
problems can be reduced to this intermediate problem relatively easier. The problem is similar to the
bounded distance decoding (BDD) problem (??) but finds a lattice vector that is within a bounded dis-
tance to the target.
Definition 0.3.1. Given a basis B of an n-dimensional lattice L, a set of linearly independent lattice
vectors S ⊆ L, a target vector t ∈ Rn and a real r > γ(n)λn(B), the incremental guaranteed distance
decoding (INCGDD) problem outputs a lattice vector v ∈ L such that ||v − t|| ≤ (||S||/g) + r.

Here, ||S|| is the maximum length of a lattice vector in S and r is needed to guarantee a solution
exists. Notice we present the definition with r > γ(n)λn(B), where the original definition has r >
γ(n)φ(B), where φ(B) is an arbitrary function on the lattice, such as its smoothing parameter or λn(B).

For a set of vectors S = {s1, . . . , sn}, denote P (S) = {
∑n
i=1 xisi | xi ∈ [0, 1)} the half-opened

parallelepiped generated by S. If S is a lattice basis, P (S) is the fundamental region. The discrete
Gaussian tool is used to prove one of the key steps of the reduction. More precisely, the discrete
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Gaussian distributions gives rise to a sampling mechanism (as shown next), whose output is a pair
(c,y) where c is almost uniform in P (B) and y is a sample from a discrete Gaussian distribution over
the lattice L(B).
Lemma 0.3.2. Given an n-dimensional lattice L(B), a vector t ∈ Rn and a scale s ≥ ηε(L) for some
ε > 0, there is a PPT sampling algorithm S(B, t, s) outputs a pair (c,y) ∈ P (B)× L(B) such that

• the statistical distance between c’s distribution and the uniform distribution over P (B) is at
most ε/2,

• for any vector ĉ ∈ P (B), the distribution of y conditioning on c = ĉ is a discrete Gaussian
distribution DL,s,t+ĉ.

Proof. The sampling mechanism S starts by generating a Gaussian noise r ← Ds,t, then outputs c =
−r mod P (B) and y = c + r. It implies that c ∼ Ds,−t mod P (B). By Lemma 0.2.1, we have
∆(Ds,−t mod F,U(P (B))) ≤ ε/2.

For any vector ĉ in the parallelepiped, when adding to the Gaussian noise r, the result ĉ+r ∼ Ds,t+ĉ

is also from Gaussian but with a shifted center. Moreover, c = ĉ implies ĉ+r = c+r = y ∈ L(B). So
the probability of y conditioning on c = ĉ is equivalent to conditioning on ĉ + r being a lattice vector,
which implies y’s distribution is discrete Gaussian.

The output of the sampling mechanism is then used by a combining procedure to solve the INCGDD
problem together with the hypothetical SIS oracle. We skip that part of the reduction and refer the reader
to Lemma 5.8 and Theorem 5.9 in Micciancio and Regev (2007) for the detailed proofs.
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