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0.1 Lattice basics

Lattices are useful mathematical tools for connecting different areas of mathematics, computer science
and cryptography. They are widely used for cryptoanalysis and building secure cryptosystems. In this
section, 1 we will introduce the basics of lattices in the general setting Rn. In addition, we introduce dual
lattices and some computational lattice problems that are commonly used to achieve provable security of
lattice-based hard problems and cryptosystems. At the end of this section, we will sketch Ajtai (1996)’s
polynomial time worst-case-to-average-case reduction to reinforce our understanding of lattices as well
as appreciate the great breakthrough in provable security of lattice-based cryptography, even against
quantum computing in some cases. Although we introduce lattices in the most general setting, their
results also hold for special lattices such as ideal lattices in the ring learning with error problem.

Intuitively, a lattice is similar to a vector space except that it consists of discrete vectors only, that
is, elements in lattice vectors have discrete values as opposed to real-valued vectors in a vector space.
For example, Figure 1 is a lattice in R2. More formally, we have the following definition.

Definition 0.1.1. Let v1, . . . ,vn ∈ Rm be a set of linearly independent vectors. The latticeLLattice generated
by v1, . . . ,vn is the set of integer linear combinations of v1, . . . ,vn. That is,

L = {a1v1 + · · ·+ anvn | a1, . . . , an ∈ Z}.

Here, the difference with vector spaces is that the coefficients in the linear combination are integers.
The integers m and n are the dimension and rankDimension,

rank
of the lattice respectively. If m = n, then L is a

full-rank lattice. In most cases, we work with full-rank lattices.

It follows from the definition that a lattice is closed under addition. Hence, we can say that an n-
dimensional lattice is a discrete additive subgroup of Rn. It is isomorphic to the additive group of Zn.
That is,

(L,+) ∼= (Zn,+) ( (Rn,+).

It is often convenient to work with lattices whose coordinates are integers. These are called integer
lattices or integral lattices. For example, the set of even integers forms an integer lattice, but not the
set of odd integers because it is not closed under addition.
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Figure 1: A lattice L with a basis B = {b1, b2} and its fundamental domain F .

A basisBasis of a lattice L is a set of linearly independent vectors B = {b1, . . . , bn} that spans the
lattice, that is,

L(B) = {z1b1 + · · ·+ znbn | zi ∈ Z}.
For example, the vectors {b1, b2} form a basis of the lattice in Figure 1.

1This section is part of the work A Tutorial Introduction to Lattice-based Cryptography and Homomorphic
Encryption by the authors Yang Li, Kee Siong Ng, Michael Purcell from the School of Computing, Australian
National University @2022.
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Figure 2: The same lattice L with a different basisB′ = {b′1, b′2} and its fundamental domain F ′, where
B′ = AB for a unimodular change of basis matrix A =

(
1 1
1 2

)
.

In what follows, we will frequently appeal to properties of a class of matrices known as unimodular
matrices. Unimodular matrices can be used to translate between different lattice bases. They are also
used, sometimes implicitly, when performing important lattice operations such as lattice basis reduction.

Definition 0.1.2.Unimodular
matrix

A matrix A ∈ Zn×n is unimodular if it has a multiplicative inverse in Zn×n. That is,
A ∈ Zn×n is unimodular if and only if A−1 ∈ Zn×n. Equivalently, a matrix A ∈ Zn×n is unimodular
if and only if |det(A)| = 1.

Similar to a vector space, a lattice does not need to have a unique basis. The following proposition
establishes the fact that one basis can be transformed to another via multiplication by the matrix A
provided that A is a unimodular matrix.

Proposition 0.1.3. If B and B′ be two basis matrices, then L(B) = L(B′) if and only if B′ = AB for
some unimodular matrix A.

Proof. Suppose that B′ = AB for some unimodular matrix A. Then, by definition both A and A−1

have integer entries. Therefore we have L(B′) ⊂ L(A−1B′) = L(B) and L(B) ⊂ L(AB) = L(B′).

Now suppose that L(B) = L(B′). Then there exist integer square matrices A,A′ ∈ Zn×n such that
B′ = AB and B = A′B′. Therefore we have B = A′AB or equivalently (I − A′A)B = 0. Because
B is non-singular, we have A′ = A−1 and A is unimodular.

For example, the vectors {b′1, b′2} in Figure 2 form a different basis for the lattice in Figure 1, with
the relation B′ = AB where the change of basis matrix A =

(
1 1
1 2

)
is unimodular.

An important concept of a lattice is the fundamental domain. It is closely related to the sparsity of a
lattice as can be seen from the following definition.

Definition 0.1.4.Fundamental
domain

Let L be an n-dimensional lattice with a basis {v1, . . . , vn}. The fundamental do-
main or (fundamental parallelepiped) of L is a region defined as

F (v1, . . . , vn) = {t1v1 + · · ·+ tnvn | ti ∈ [0, 1)}.

The lattice L and the given basis in Figure 1 has the fundamental domain coloured in grey. It is the
convex region that is surrounded by the given basis vectors and the nearby lattice points.

Definition 0.1.5.Determinant Let L be an n-dimensional lattice with a fundamental domain F . Then the n-
dimensional volume of F is called the determinant of L, denoted by det(L).
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Given a basis {v1, . . . , vn} of an n-dimensional lattice L, we can write each basis vector vi =
(vi1, . . . , vin) as a vector of its coordinates. Then we have a basis matrix

B =

v11 · · · v1n

...
. . .

...
vn1 · · · vnn

 . (1)

In cryptography, we are interested in full-rank lattices, whose determinant can be easily calculated using
a basis matrix as stated in the next proposition.

Proposition 0.1.6. IfL is an n-dimensional full-rank lattice with a basis {v1, . . . , vn} and an associated
fundamental domain F = F (v1, . . . , vn), then the volume of F (or determinant of L) is equal to the
absolute value of the determinant of the basis matrix B, that is,

det(L) = V ol(F ) = |detB|.

Although the fundamental domain may have a different shape under another choice of a basis, it can
be proved that area (or volume) stays unchanged. This gives rise to the determinant of a lattice which is
an invariant quantity under the choice of a fundamental domain.

Corollary 0.1.7.Invariant
determinant

The determinant of a lattice is an invariant quantity under the choice of a basis for L.

Proof. Let L be a lattice and let B and B′ be the basis matrices for two different bases for L. There
exists a unimodular matrix A such that B′ = AB. Consequently, we have

|det(B′)| = |det(AB)| = |det(A)| · | det(B)| = |det(B)|.

So, we have |det(L)| = |det(B′)| = |det(B)|.

Example 0.1.8. Let L be a 3-dimensional lattice with a basis

{v1 = (2, 1, 3), v2 = (1, 2, 0), v3(2,−3,−5)}.

Then a basis matrix is

B =

2 1 3

1 2 0

2 −3 −5

 . (2)

The determinant of the lattice is det(L) = |det(B)| = 36.

Geometrically, this also makes sense. By definition, each fundamental domain contains exactly one
lattice vector (in Figure 1 and 2 the origin). Consider fundamental domains that are centered on lattice
points rather than having lattice points at one corner. That is, consider

F̃ (v1, v2, . . . , vn) = {t1v1 + t2v2 + . . .+ tnvn | ti ∈ [−1/2, 1/2)}.

Take a large ball centered at the origin and notice that, because each fundamental domain contains
exactly one lattice point, the volume of the ball is approximately equal to the number of lattice points in
the ball multiplied by the volume of the fundamental domain. More precisely, we have

lim
r→∞

Vol (Br(0))

|Br(0) ∩ L|
= Vol

(
F̃ (v1, v2, . . . , vn)

)
= det(L).

By definition, choosing a different basis doesn’t change the lattice. So, the volume of the fundamental
domain, and therefore the determinant of the lattice, is a property of the lattice and does not depend on
the basis used to represent that lattice.

Two remarks. First, a lattice L can be partitioned into disjoint fundamental domains, the union of
which covers the entire L. Second, since the choice of a fundamental domain is arbitrary and it covers
real vectors that are not in L, each real vector can be uniquely identified by a lattice vector and a real
vector in a fundamental domain. These are captured in the following proposition. For the proof, see
Proposition 6.18 in Hoffstein et al. (2008).

3



A PREPRINT - JULY 26, 2022

Proposition 0.1.9. Let L be an n-dimensional lattice in Rn with a fundamental domain F . Then every
vector w ∈ Rn can be written as

w = v + t (3)
for a unique lattice vector v ∈ L and a unique real vector t ∈ F .

Equivalently, the union of the translated fundamental domains cover the span of the lattice basis
vectors, i.e.,

span(L) = {F + v | v ∈ L}.

Another useful interpretation of Equation 3 is that for any vector w ∈ Rn, there is a unique real
vector t ∈ F in the fundamental domain such that w − t ∈ L(B) is a lattice vector. In other words,
given an arbitrary vector w ∈ Rn in the span, we can efficiently reduce it to a vector t ∈ F in the
fundamental domainModulo basis by taking w modulo the basis (or modulo the fundamental domain as used by
some authors). More precisely, for a basis {v1, . . . ,vn} of L ∈ Rn, it is obvious that the basis is also
a basis of the span Rn, so we have w = α1v1 + · · · + αnvn for coefficients α1, . . . , αn ∈ R. The
coefficients can also be written as αi = ai + ti for ai ∈ Z and ti ∈ (0, 1). This implies the real vector
can be re-written as w = (a1v1 + · · · + anvn) + (t1v1 + · · · + tnvn) = v + t, where in the first
pair of parentheses is a lattice vector v and in the second pair is a real vector t within the fundamental
domain. From this, we can compute t = w − v. This also gives an alternative formula for computing
the modulo basis operation by

w mod B = w −B · bB−1 ·wc. (4)

For example, given a 2-dimensional latticeL ∈ R2 with a basis B =
(

3 0
0 2

)
and a real vector w = (2, 3).

By reducing w modulo the fundamental domain we get w mod B = (2, 1).

Similar to a real vector, the length a lattice vector can also be measured by a norm function || · ||.
However, unlike in a vector space where there is no shortest non-zero vector, it is possible to define
shortest non-zero vector in a lattice because of the discreteness, although this shortest vector may not
be unique.
Definition 0.1.10.Shortest vector Given a lattice L, the length of a shortest non-zero vector in L which is also a
minimum distance between two lattice vectors is defined as

λ1(L) = min{||v|| | v ∈ L \ {0}}
= min{||x− y|| | x,y ∈ L,x 6= y}.

The shortest vector problem (formally defined in Section 0.3) is to find the shortest non-zero vector
in a given lattice. For a lattice L, notice that λ1(L) is the solution to the shortest vector problem for that
lattice.

The shortest vector problem can be generalized to the problem of finding the ith successive minima.
The ith successive minima is the minimum length r such that the lattice contains i linearly independent
vectors of length at most r. This can also be defined in relation to the dimension of the space spanned
by the intersection between L and a zero-centered closed ball B̄(0, r) with radius r.
Definition 0.1.11.Successive

minima
Given a lattice L, the ith successive minima of L is defined as

λi(L) = min{r | dim(span(L ∩ B̄(0, r))) ≥ i},
where B̄(0, r) = {x ∈ Rn | ||x|| ≤ r} is the closed ball of radius r around 0.

For example, if the lattice L = Zn, then the 1st to the nth successive minima λ1 = · · · = λn = 1
are equal to 1. The length of a shortest vector is a special case of the successive minima when i = 1.
We will see the successive minima again when introducing shortest independent vector problem as a
generalization of the shortest independent problem in 0.3.

Notice that a set of vectors that achieves the successive minima of a lattice is not necessarily a
basis for that lattice. Consider the following example which is derived from the work of Korkine and
Zolotareff (1873) and was presented its current form in Nguyen and Vallée (2010). Let

B =


2 0 0 0 1

0 2 0 0 1

0 0 2 0 1

0 0 0 2 1

0 0 0 0 1

 .
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Notice that 2e5 ∈ L(B) and that ‖v‖ ≥ 2 for all v ∈ L(B) \ {0}. So, λi(L(B)) = 2 for 1 ≤ i ≤ 5. If
we let

B̃ =


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

 .

then we have L(B̃) ⊂ L(B) and det(B̃) = 32. On the other hand, we see that det(B) = 16. Therefore,
B̃ cannot be a basis for L(B). In fact, it can be shown that no basis of L(B) realizes all of the successive
minima of L(B).

0.2 Dual lattice

In this subsection, we introduce dual lattices. This is a useful concept that will be used at several
different places, such as defining smoothing parameter for discrete Gaussian distribution and in the
hardness proof of the ring learning with error problem. It is important to develop a geometric intuition
of the relationship between a lattice and its dual.

The dual (sometimes also called reciprocal) of a lattice is the set of vectors in the span of the lattice
(e.g., the span is Rn if the lattice is Zn) whose inner product with the lattice vectors are integers.

Definition 0.2.1.Dual lattice Given a full-rank lattice L, its dual lattice is defined as

L∗ = {y ∈ span(L) | ∀x ∈ L,x · y ∈ Z}.

For example, the dual lattice of Zn is Zn and the dual lattice of 2Zn is 1
2Z

n as shown in Figure 4.
An important observation is that the more vectors a lattice has, the less vectors its dual has and vice
versa, because there are more (or less) constraints. Most importantly, it can be verified that the dual of
a lattice is also a lattice.

Proposition 0.2.2. If L is a lattice then L∗ is a lattice.

Proof. It suffices to show that L∗ is closed under subtraction. That is, to show that if x, y ∈ L∗ then
x − y ∈ L∗. This follows from the linearity of the inner product. More explicitly, for every z ∈ L we
have (x− y) · z = x · z− y · z. Because x · z ∈ Z and y · z ∈ Z, we have (x− y) · z ∈ Z. The result
then follows from the definition of L∗.

Given a lattice L, it is natural to ask if we can find a basis for L∗. This leads us to define the dual
basis of a lattice.

Definition 0.2.3.Dual basis For a lattice L and a basis B = (b1, . . . , bn) ∈ Rm×n, the dual basis D =
(d1, . . . , dn) ∈ Rm×n is defined as the unique basis that satisfies

• span(B) = span(D) and

• BTD = I .

The first condition says both bases span the same vector space. The second condition implies that
bi · dj = δij = 1 if i = j and 0 otherwise. Abusing notation, we use B to denote both the basis of a
lattice and the basis matrix. If L is a full-rank lattice (i.e., m = n), then the basis matrix B is invertible,
so the dual basis matrix can be expressed as D = (BT )−1 = (B−1)T .

Proposition 0.2.4. If L is a lattice with basis B, then the dual basis is a basis for L∗.

Proof. This follows immediately from the definition of the dual lattice and the linearity of the inner
product.

Having established that the dual of a lattice is itself a lattice, we can ask what we get if repeat the
process and compute the dual of a dual lattice.

Proposition 0.2.5. For any lattice L, we have (L∗)∗ = L.

5



A PREPRINT - JULY 26, 2022

b1

b2

d1

d2

Figure 3: A lattice L = 2Z2 (black points) and its dual L∗ = 1
2Z

2 (blue points). The basis of L is
B = {b1 = (2, 0), b2 = (0, 2)} and the dual basis of L∗ is D = {d1 = ( 1

2 , 0), d2 = (0, 1
2 )}.

Proof. If B is a basis for a full-rank lattice L, then a dual basis is D = (BT )−1. Then the dual basis
of D is (DT )−1 that is equal to B. The same argument works for rank-deficient lattices, but with slight
variation because their bases are non-square matrices.

Proposition 0.2.6. For any lattice L, we have det(L∗) = 1
det(L) .

Proof. Again, we give a proof for full-rank lattices. If L is full-rank, then

det(L∗) = |det(D)| = |det((BT )−1)| = 1

|det(BT )|
=

1

|det(B)|
=

1

det(L)
.

Although a lattice and its dual are both lattices, they are fundamentally different objects. The dual
of a lattice can be thought as functions that are applied to the lattice such that the inner products of the
lattice vectors and each dual vector are integers.

Here is a geometric interpretation of a lattice and its dual. For each lattice vector v, its inner products
with the dual vectors produce integers of different values. So v partitions the dual lattice into parallel
non-overlapping hyperplanes that are perpendicular to vHyperplanes according to its inner product values with the
dual vectors. Elements in the same hyperplane have the same inner product with the lattice vector v,
so they form an equivalence class. Alternatively, we can say v partitions the dual lattice into a set of
equivalence classes. Figure. 4 gives two examples of how a lattice vector v ∈ L = 2Z2 partitions the
dual lattice L∗ = 1

2Z
2. In addition, the distance between two neighbouring hyperplanes is the inverse

of the vector length (i.e., 1/||v||).
Example 0.2.7. When L = 2Z and L∗ = 1

2Z, the vector v = 1
2 partitions L to |2Z| hyperplanes, each

contains exactly one integer from L and the neighbouring hyperplanes are distance 2 apart.

When L = 2Z2 and L∗ = 1
2Z

2, the vector v = (2, 0) partitions the dual lattice into hyperplanes
as shown in Figure 4a, where the hyperplanes are the vertical lines that are perpendicular to the lattice
vector v. The distance between the neighbouring hyperplanes is 1

||v|| = 1
2 . So the dual is denser than

L. If v = (2, 2), the dual is partitioned into hyperplanes as shown in Figure 4b. The distance between
the neighbouring hyperplanes is 1

||v|| = 1
2
√

2
.
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v1

(a) The dual lattice is partitioned into hyperplanes according to the given lattice vector v = (2, 0).

v1

(b) The dual lattice is partitioned into hyperplanes according to the given lattice vector v = (2, 2).

Figure 4: For a given lattice vector v ∈ L = 2Z2, the dual lattice L∗ = 1
2Z

2 can be partitioned into
parallel non-overlapping hyperplanes (vertical lines) that are perpendicular to v. Elements in the same
hyperplane have the same dot product with v, so they form an equivalence class.

7
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0.3 Some lattice problems

Having briefly introduced lattices and some related concepts, we are ready to define some computational
lattice problems in this subsection. The most well known two are the shortest vector problem and
closest vector problem. These two are search problems because the aims are to find a shortest or closest
lattice vector. Few cryptosystems, however, are based on these two problems directly. Instead, most
cryptosystems are based on their decision versions or relaxed approximation variants. Below, we state
the two well known lattice problems and some variants.

The Shortest Vector Problem (SVP)
Given a lattice basis B, find a shortest non-zero vector in the lattice L(B), i.e., find a non-zero
vector v ∈ L(B) such that ||v|| = λ1(L(B)).

SVP is hard to solve in high-dimensional lattices. An important variant of SVP is finding a set of
short linearly independent lattice vectors as stated below.

The Shortest Independent Vectors Problem (SIVP)
Given a lattice basis B of an n-dimensional lattice L(B), find n linearly independent vectors
v1, . . . ,vn ∈ L(B) such that maxi∈[1,n] ||vi|| = λn(L(B)).

The Closest Vector Problem (CVP)
Given a lattice basis B and a target vector t that is not in the lattice L(B), find a vector in
L(B) that is closest to t, i.e., find a vector v ∈ L(B) such that for all w ∈ L(B) it satisfies
||v − t|| ≤ ||w − t||.

A special case of CVP is the bounded distance decoding problem, which is used in the learning
with error problem’s hardness proof (Regev, 2009). The name reflects that the problem is to “decode” a
given Rn vector. The extra condition makes it a special case of CVP is that the given non-lattice vector
is within a bounded distance to the lattice.

The α-Bounded Distance Decoding Problem (BDDα)
Given a lattice basis B of an n-dimensional lattice L and a target vector t ∈ Rn satisfies
dist(t, B) ≤ αλ1(L), find a lattice vector v ∈ L that is closest to t, i.e., for all w ∈ L it
satisfies ||v − t|| ≤ ||w − t||.

An alternative way of defining BDD is to find the lattice vector x ∈ L given the instance y =
x + e ∈ Rn, where e is often interpreted as a noise with norm ||e|| ≤ αλ1(L).

As discussed in ??, knowing c-gap problems are hard implies the corresponding c-approximate
problems are also hard. But c-approximations are often used to prove some problems are hard to solve
(e.g., SIS) because it is relatively easier to build reductions from them. Below we state the gap/approx-
imate variants of the standard lattice problems. Let γ(n) : N → N be a gap function in the input size
such that γ(n) ≥ 1, for example γ(n) is a polynomial of n.

The γ-GAP Shortest Vector Problem (GAPSVPγ)
INSTANCE: For a function γ(n) ≥ 1, given a real number d > 0 and a lattice basis B, the
instance (B, d) is

• either a YES instance if λ1(L(B)) ≤ d
• or a NO instance if λ1(L(B)) ≥ γ(n)d.

QUESTION: Is (B, d) a YES or NO instance?

8
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The (ζ, γ)-GAP Shortest Vector Problem (GAPSVPζ,γ)
INSTANCE: For functions ζ(n) ≥ γ(n) ≥ 1, given a real number d > 0 and a lattice basis B
of an n-dimensional lattice L(B) such that

• λ1(L(B)) ≤ ζ(n),

• mini∈[1,n] ||b̃i|| ≥ 1,

• 1 ≤ d ≤ ζ(n)/γ(n),
the instance (B, d) is

• either a YES instance if λ1(L(B)) ≤ d
• or a NO instance if λ1(L(B)) ≥ γ(n)d.

QUESTION: Is (B, d) a YES or NO instance?

The γ-Shortest Independent Vectors Problem (SIVPγ)
Given a lattice basis B of an n-dimensional lattice L(B), find n linearly independent vectors
v1, . . . ,vn ∈ L(B) such that maxi∈[1,n] ||vi|| ≤ γ(n)λn(L(B)).

0.4 Ajtai’s worst-case to average-case reduction

SVPγ USVPγ

SBPγ

SIVPγ

SIS

Figure 5: Reductions to the SIS problem from hard lattice problems (SVPγ , USVPγ and SBPγ). The
intermediate lattice problem in the reductions is the γ-approximation of the shortest independent vector
problem (SIVPγ).

To finish off this section, we present a high level overview of Ajtai (1996)’s worst-case to average-
case reduction. As briefly explained in ??, such a reduction allows one to build cryptosystems based on
an average-case hardness problem, so that users can rest assured that their random encryption instances
are guaranteed to be secure with high confidence.

Ajtai’s proof is based on three well-studied lattice problems, SVPγ , USVPγ and SBPγ . The second
problem is a variant of SVP that finds the unique shortest non-zero vector in the lattice L(B), i.e.,
find the non-zero vector v ∈ L(B) such that ||v|| = λ1(L(B)) and if w ∈ L(B) such that ||w|| ≤
nc||v|| then w is parallel to v. The third problem is to find a shortest basis {b1, . . . ,bn} of a given
lattice, where the basis length is defined as maxni=1 ||bi||. All three problems are used in their gap (or
approximation) versions.

The average-case hard problem constructed by Ajtai (1996) is known as the short integer solution
(SIS) problem.SIS Let ai ∈ Znq be a length n vector with entries taken uniformly from Zq . Let A = [a1 |
· · · | am] be an n ×m matrix whose columns are m linearly independent ais. The SIS problem is to
find a non-zero vector x ∈ Zm such that

• ||x|| ≤ β and

9
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• Ax = 0 ∈ Znq , i.e., x1a1 + · · ·+ xmai = 0 mod q.

Notice that the norm bound exists to ensure the problem is not easily solvable by for example Gaussian
elimination. It must satisfy β < q to avoid the trivial solution x = (q, 0, . . . , 0). Moreover, β and m
must be large enough to allow a solution to exist. See Section 4 of (Peikert, 2016) for more detailed
insights.

The structure of the reduction is shown in Figure 5. The essential part of the proof is a polynomial-
time reduction from SBPγ to SIS. The other two lattice problems can be reduced to SBPγ , we skip the
reduction details and refer the reader to the appendix of (Ajtai, 1996).

To further simplify the reduction steps, SBPγ is related to SIVPγ because given a set of linearly
independent lattice vectors r1, . . . , rn ∈ L, a basis {s1, . . . , sn} of L can be constructed in polynomial
time such that maxni=1 ||si|| ≤ nmaxni=1 ||ri||. So the task becomes finding linearly independent lattice
vectors r1, . . . , rn ∈ L such that maxni=1 ||ri|| ≤ nc3−1bl(L), where bl(L) is the length of the shortest
basis of L.

The reduction starts by assumingSIVPγ to SIS there is a probabilistic polynomial time (PPT) algorithm A that
solves SIS with a non-negligible probability.2

The next step is to turn a (hard) instance of SIVPγ to a random SIS instance and show that if such
anA exists, it gives rise to a PPT algorithm B that solves SIVPγ by finding a set of linearly independent
vectors {a1, . . . ,an} such that the maximum length is bounded maxi ||ai|| = M ≤ nc3−1bl(L). From
this upper bound and SIVPγ’s relation to SBPγ , we can get a basis whose length is within the desired
bound nc3bl(L), so SBPγ is solved as well as SVPγ and USVPγ .

The key to produce short linearly independent vectors a1, . . . ,an to satisfy M < nc3−1bl(L) is to
iteratively produce from the longer vectors shorter ones of maximum length M

2 . Repeating this steps at
most log2M steps we get vectors of the desired length.

Each run of the recursive step is as follows:

1. Starting from the lattice vectors a1, . . . ,an, construct other lattice vectors f1, . . . , fn such that
they are nearly pairwise orthogonal and have similar length, but constraint the maximum length
maxni=1 ||fi|| ≤ n3M . The reason is to form a parallelepipedW = P (f1, . . . , fn) that is almost
a hypercube, as shown in a 2-dimensional lattice in Figure 6. This step was proved in Lemma
3 Ajtai (1996).

2. We then evenly cut W into qn small non-overlapping parallelepipeds which have the form

wj = (
∑n
i=1

tji
q fi) + 1

qW , where tji ∈ [0, q) is an integer. Now sample m random lattice
vectors from L, then reduce them modulo W to ensure they are within the bigger paral-
lelepiped. Denote these reduced vectors by ξ1, . . . , ξm. If ξk is in a smaller parallelepiped

wj = (
∑n
i=1

tji
q fi) + 1

qW , then take (tj1, . . . , t
j
n) and put it as a column of a matrix A. The

claim is that each of the wj’s is selected with almost equal chance, so we have a random n×m
matrix A. The key intuition is that for a short basis of L, if W intersects with a translation
of the fundamental domain formed by the short basis, then W will contain a large proportion
of the translated fundamental domain. This property remains true for an arbitrary translation
and scaling of W using u + 1

qW for a vector u ∈ Rn. With this property, if W is cut into
small non-overlapping regions evenly, then random samples of lattice vectors within W will
induce a near uniform distribution over the wj’s. This helps ensure that the matrixA generated
randomly as above is a random instance of SIS. This step was proved in Lemma 8 Ajtai (1996).

3. Now give the matrix A to the PPT algorithm A to output an SIS solution (h1, . . . , hm) ∈ Zm.
It remains to prove that the vector u =

∑n
i=1 hiξi is only half of size of the starting vectors,

i.e., ||u|| ≤ M
2 and they are non-zero. This step was proved in Lemma 13 Ajtai (1996).

A couple of remarks about the reduction. First, the approximation (or gap) factors in the lattice
problems are relatively large, typically larger than n8 as analysed by Cai and Nerurkar (1997) and

2Ajtai related SIS with finding a short vector in a q-ary lattice L⊥
q (A) = {x | Ax = 0 mod q}. His reduction

starts with assuming A is a PPT algorithm to find a short lattice vector in a given L⊥
q (A). For the purpose of

sketching the main steps of the proof, it is not necessary to relate SIS with the q-ary lattice problem.
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f1

f2

Figure 6: In a lattice L = Z2, the near cubic parallelepiped W formed by the large independent vectors
{f1, f2}. It is divided into q2 smaller pieces, each of which is hit with equal probability by random
lattice vectors reduced within W .

suggested in the Introduction section in (Micciancio and Regev, 2007). This could raise minor concerns
about the hardness of the lattice problems, because the larger the gap factors the easier the problems are.
In a following section, we will introduce the discrete Gaussian strategy to reduce these factors down to
Õ(n) for the SIS problem. The proof strategy will follow Ajtai’s technique of constructing, from a set
of linearly independent vectors of a lattice, a random set of lattice vectors that are well spread out and
as short as possible. Second, the public key size required by an SIS-based cryptosystem is Õ(n4) that
is quite inefficient for practical purposes. This will be dramatically improved by developing different
average-case problems as we will see in the learning with error and ring learning with error problems.

0.5 An application of SIS: Collision resistant hash functions

SIS has been used as the foundation of one-way functions and hash functions, see e.g. (Lyubashevsky
et al., 2010).

A hash function maps inputs of arbitrary length and compresses them into short fixed-length outputs
known as digests.
Definition 0.5.1. A (keyed) hash functionHash function with output length l is a pair of probabilistic polynomial-
time algorithms (Gen, H) satisfying the following:

• The algorithm Gen(1n)→ s generates a key s from the security parameter 1n.

• For a string x ∈ {0, 1}∗ of arbitrary length, the algorithm H outputs a string Hs(x) ∈
{0, 1}l(n).

The general interest in hash functions is the case when the outputs are shorter than the inputs for
both computational and storage efficiency. In such a case, a hash function’s domain is larger than its
range, which implies the possibility of having two distinct inputs being mapped to the same output. We
often say the two distinct inputs collide and the scenario is called a collision.

For a hash function Π = (Gen, H), an adversary A and the security parameter n, we can define the
collision-finding experiment Hash-collA,Π(n) as:Hash-

collA,Π(n)
1. Run the algorithm Gen(1n)→ s.
2. The adversary A is given the key s.

11
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3. The adversary produces two strings x, and x′.
4. Hash-collA,Π(n) = 1 if x 6= x′ and Hs(x) = Hs(x′) and 0 otherwise.

A cryptographic hash function requires the chance of finding a collision is negligible, which is
defined more formally as follows.
Definition 0.5.2. A hash function Π = (Gen, H) is collision resistantCollision

resistant
if for any probabilistic polyno-

mial time adversary A, it satisfies

Pr[Hash-collA,Π(n) = 1] ≤ negl(n).

From Ajtai’s SIS problem and the worst-case-to-average-case reduction, one can easily build a col-
lision resistant hash function where the key is the matrix A ∈ Zn×mq and the hash function is given
by

fA : {0, . . . , d− 1}m → Znq
fA(x) = Ax mod q.

If there is a collision fA(x) = fA(x′) between distinct inputs x and x′, then A(x − x′) = 0 and
x − x′ ∈ L⊥q (A). Furthermore, because each element of x − x′ is in the set {−1, 0, 1}, we see that
x − x′ is a short vector. Hence, an efficient algorithm that produces collisions for this hash function
could be used to solve SIS in the lattice L⊥q (A).
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