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This section 1 introduces some of the results in Algebraic Number Theory that will be needed in the
hardness proof of the ring LWE (RLWE) problem. In RLWE, proofs and computations are conducted
in number fields and rings of integers, which are generalizations of the rational field Q and integers
Z. However, unlike elements in Z that can be uniquely factorized, which is an essential property that
guarantees the validity of some hard computational problems such as integer factorization, elements of
rings of integers are not necessarily uniquely factorizable in general. Instead we need to work with sets
of elements that possess such unique factorization. As we will see in this section, the ideals of these
rings of integers are natural candidates for this purpose and we will state some useful properties of the
ideals. In particular, the connection with lattice theory comes from a natural mapping between these
ideals of a ring of integers to full-ranked lattices that we call ideal lattices.

Algebraic Number Theory is a deep and interesting area and we do not attempt to cover all important
results in this compact section. Instead, we cover only those mathematical results that are directly
relevant to the future sections. Additional results that may assist the reader to better understand the
main content are kept in the appendix. This section is organized as follows:

1. First, we familiarize the reader with algebraic number field, its ring of integers and ideals of
the ring of integers including the generalized fractional ideals. The most important observation
is that a fractional ideal can be uniquely factorized into prime ideals. This plays a significant
part when employing the Chinese Remainder Theorem (CRT) for number fields.

2. Second, to build the geometric interpretation of these algebraic objects, we introduce canoni-
cal embedding, which maps fractional ideals to special lattices called ideal lattices. The em-
bedding allows us to talk about geometric quantities of algebraic objects and enables certain
features of ideal lattices that are convenient for the RLWE’s proof and computations.

3. Finally, we go through dual lattices in number fields and relate them with fractional ideals.

It’s worth noting that many of the concepts covered in this section are used primarily for analysis of
the hardness results of the RLWE problem. As such, some readers may find it useful to first skim this
section quickly to identify key concepts, and only come back for details as they work through Section ??.
The only computations that are explicitly needed in RLWE-based cryptosystems are Fast Fourier Trans-
form operations to transform polynomials between their natural and canonical embeddings.

0.1 Ring of integers and its ideal

We have seen the LWE problem, which was defined in the integer domain Z and proved to be hard by
reductions from hard lattice problems in the domain in Rn. The drawback of LWE is the large public
key that is a matrix of m independent length n columns vectors. The RLWE problem, which greatly
reduces the key size, is defined in a more general domain, called the ring of integers.

Recall that an algebraic number (integer) is a complex number that is a root of a non-zero polynomial
with rational (integer) coefficients. For example,

√
2 is a root of the polynomial x2 − 2, so it is an

algebraic integer. Algebraic numbers and algebraic integers generalize rational numbers and rational
integers. In addition, they respectively form fields and rings just like the rational field Q and the integer
ring Z.

Definition 0.1.1.Number field An algebraic number field (or simply number field) is a finite extension of the field of
rationals by algebraic numbers, i.e., Q(r1, . . . , rn), where r1, . . . , rn are algebraic numbers.

In a special case when the element ζn adjoins to Q is an nth root of unity, which is also an algebraic
number, the number field Q(ζn) is also known as theCyclotomic

field
nth cyclotomic number field (or nth cyclotomic

field). This is the primary working domain for RLWE reduction from the search to decision version. In a
number field K, the set of all algebraic integers forms a ring under the usual addition and multiplication
operations in K. These elements form a ring and is the generalization of the ring of rational integers.

Definition 0.1.2.Ring of integers The ring of integers of an algebraic number field K, denoted by OK , is the set of all
algebraic integers that lie in the field K.

1This section is part of the work A Tutorial Introduction to Lattice-based Cryptography and Homomorphic
Encryption by the authors Yang Li, Kee Siong Ng, Michael Purcell from the School of Computing, Australian
National University @2022.
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Some examples of a number field and its ring of integers are the basic Q and Z, the quadratic
field Q(

√
2) and Z[

√
2], the nth cyclotomic field Q(ζn) and Z[ζn]. In general, determining the ring of

integers is a difficult problem, unless for special cases, see Theorem ?? in Appendix ??.

Since Z is contained in OK , we can also interpret OK as a Z-module. In addition,OK is a free
Z-module

OK is a free
Z-module, as there always exists a Z-basis B = {b1, . . . , bn} ⊆ OK such that every element r ∈ OK
can be written as r =

∑n
i=1 aibi, where ai ∈ Z. The basis B is called an integral basisBasis of the number

field K and its ring of integers OK . If the basis can be written as {1, r, . . . , rn−1} the powers of an
element r ∈ K, then it is called a power basis. A field K always has a power basis by the Primitive
Element Theorem (Appendix ?? Theorem ??). If K = Q(ζm) is a cyclotomic field, the power basis
{1, ζm, . . . , ζϕ(m)−1

m } is also an integral basis of OK .

0.1.1 Integral ideal

In the applications of this tutorial, we do not work with individual elements in OK because they lack
the unique factorization property; instead, we work with ideals of OK . Ideals of a ring are useful
for constructing a field, for the same reason they are important in the ring of integers. Since we will
generalize ideals ofOK to fractional ideals, we sometimes call ideals integral ideals to distinguish them.
Definition 0.1.3. Given a number field K and its ring of integers OK , anIntegral ideal (integral) ideal I of OK is
a non-empty (i.e., I 6= ∅) and non-trivial (i.e., I 6= {0}) additive subgroup of OK that is closed under
multiplication by the elements in OK , i.e., for any r ∈ OK and any x ∈ I , their product rx ∈ I .

As OK is commutative, we do not differentiate left and right ideals. The definition intentionally
excluded the zero ideal {0} in order to simplify the work of defining ideal division later. Since OK has
a Z-basis, its ideals have Z-bases too, which makes ideals of OK free Z-modules too. As we will see
later, these bases will be mapped to bases of ideal lattices by canonical embeddings.

We now define basic arithmetic of ideals. In particular, we focus on ideal multiplication and division
which then lead to prime ideals.

Recall that if I and J are ideals then the set sum I + J = {x + y | x ∈ I, y ∈ J} is also an ideal.
The set product S = {xy | x ∈ I, y ∈ J}, however, may not be an ideal because it is not necessarily
closed under addition. For this reason, the product of two ideals I and J is defined as the set of all
finite sums of products of two ideal elements:Ideal product

IJ :=

{
n∑
i=1

aibi | ai ∈ I and bi ∈ J, n ∈ N

}
,

By grouping all finite sums of products, the set is closed under addition. Furthermore, it is closed under
multiplication by OK , so the product is also an ideal. Since OK is commutative, ideal multiplication is
commutative too.
Example 0.1.4. Given the ring of integers OK = Z and two ideals I = 2Z = {2, 4, 6, 8, . . . , } and
J = 3Z = {3, 6, 9, 12, . . . , }, their product is IJ = {2 · 3, 2 · 6, 2 · 3 + 2 · 6, . . . }.

Since the zero ideal is excluded from the ideal definition, it is convenient to define ideal division.
The intuition is the same as non-zero integer division.
Definition 0.1.5. Let I and J be two ideals ofOK . We sayIdeal division J divides I , denoted J | I , if there is another
ideal M ⊆ OK such that I = JM .

The following theorem gives a more intuitive way of thinking about ideal division by relating divi-
sion with containment.
Theorem 0.1.6. Let I and J be two ideals of OK . Then J | I if and only if I ⊆ J .

The intuition of divisibility implies containment is that if J | I then I = JM ⊆ J , so I ⊆ J . The
converse may not be true in general, but is certainly true in the context of OK .

The standard definition of a prime ideal I ⊆ OK is that it is a proper ideal such that if xy ∈ I , then
either x ∈ I or y ∈ I . The next lemma gives an alternative definition in terms of ideal containment.
Lemma 0.1.7. An ideal I of OK is prime if and only if for ideals J and K of OK , whenever JK ⊆ I ,
either J ⊆ I or K ⊆ I .
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By this lemma and Theorem 0.1.6, we can define a prime ideal in analogy to a prime number.
Definition 0.1.8. A proper ideal I ( OK is primePrime ideal if whenever I | JK, either I | J or I | K.

Principal ideals and maximal ideals are defined in the same way as that in general rings. An impor-
tant observation is that in OK , prime ideals are also maximal.
Lemma 0.1.9. All prime ideals in OK are maximal.

The proof relies on the results that the quotient of a commutative ring by a prime ideal gives an
integral domain, and the quotient by a maximal ideal gives a field. See Lemma ?? in Appendix ??. The
importance of this lemma is that when working in OK/I , the quotient ring by a prime ideal I is a field,
as implied by Proposition ?? in Appendix ??.

The most important result of this subsection, which is also one of the main theorems in Algebraic
Number Theory, is that ideals ofOK can be uniquely factorized into prime ideals. Alternatively, we say
the ideals of OK form a unique factorization domain.
Definition 0.1.10. An integral domain D is a unique factorization domain (UFD) if every non-zero
non-unit element x ∈ D can be written as a product

x = p1 · · · pn
of finitely many irreducible elements pi ∈ D uniquely up to reordering of the irreducible elements.

We know Z is a UFD, because every integer can be uniquely factored into a prouct of prime num-
bers. But the extension Z(

√
5) is not a UFD, because not every element has a unique factorization, for

example 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5), which can be factored in two ways. To avoid such issues,

we do not work with the individual elements in OK , but study the ideals of OK , which do form a UFD
because OK is a Dedekind domain. (See Appendix ?? for more detail about Dedekind domain.)
Theorem 0.1.11.UFD For an algebraic number field K, every proper ideal I of OK admits a unique fac-
torization

I = q1 · · · qk, (1)
into prime ideals qi of OK .
Example 0.1.12. When working in the 5th cyclotomic field K = F11(ζ5) and OK = Z11[ζ5], the ideal
I = (11) of OK can be uniquely factorized into the product of these four prime ideals:

(11) = (11, ζ5 − 3)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 4).

The detailed derivation is given in Example 0.1.26.

The usefulness of UFD in our context is that it gives a unique isomorphism between a quotient ring
OK/I and its Chinese Remainder Theorem (CRT) representation. To generalize CRT to the ring of
integers OK , we first define coprime ideals in OK . Since ideals in OK can be uniquely factorized, it
makes sense to talk about coprimality. The standard definition is similar to coprime integers, which do
not share a common divisor.
Definition 0.1.13.Ideal GCD Let I and J be integral ideals of OK , their greatest common divisor (GCD)
gcd(I, J) = I + J .
Definition 0.1.14.Coprime Two ideals I and J in OK are coprime if I + J = OK .

In other words, two integral ideals are coprime if their sum is the entire ring of integers. For example,
the integral ideals (2) and (3) in Z are coprime because (2) + (3) = (1) = Z. But the integral ideals
(2) and (4) are not coprime because (2) + (4) = (2) 6= Z.

Theorem 0.1.15.CRT in OK Let I1, . . . , Ik be pairwise coprime ideals in a ring of integers OK and I =
∏k
i=1 Ii.

Then the map
OK → (OK/I1, . . . ,OK/Ik)

induces an isomorphism
OK/I ∼= OK/I1 × · · · × OK/Ik.

The core element of the proof of CRT in OK is to show that the kernel of the map is I1 ∩ · · · ∩ Ik,
which is identical to

∏k
i=1 Ii under the assumption that the ideals are pairwise coprime. The result then

follows from the First Isomorphism Theorem.
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By CRT in OK , the factorization (1) yields the isomorphism

OK/I ∼= OK/q1 × · · · × OK/qk. (2)

This isomorphism is essential for the hardness proof of RLWE. If the factorization is not unique, the
same proof will not follow through. We will discuss more detail of the proof in Section ??.

0.1.2 Fractional ideal

As briefly mentioned earlier, fractional ideals are generalizations of integral ideals and they are one of
the main ingredients in the hardness proof of RLWE. On the one hand, fractional ideals share some
common properties with integral ideals including the important unique factorization characteristic. On
the other hand, they are neither ideals of the ring of integersOK nor ideals of the number field K as we
will see soon.
Definition 0.1.16. Let K be a number field and OK be its ring of integers. A fractional idealFractional ideal I of OK
is a set such that dI ⊆ OK is an integral ideal for a non-zero d ∈ OK .

Given an integral ideal J ⊆ OK and an invertible element x ∈ K, the corresponding fractional ideal
I can be expressed as

I = x−1J := {x−1a | a ∈ J} ⊆ K.
From this expression, it is clearer that the non-zero element d ∈ K in the above definitions is for can-
celling the denominator x of elements in the fractional ideal. When x = 1, it entails the integral ideals
ofOK includingOK itself are all fractional ideals. This is also why fractional ideals are generalizations
of them. Since an integral ideal is a free Z-module and a fractional ideal is related to an integral ideal
by an invertible element, it follows that a fractional ideal is a free Z-module too with a Z-basis.

It can be seen that a fractional ideal is closed under addition and multiplication by the elements in
OK , but it is NOT an ideal of OK , because it is not necessarily a subset of OK . Neither it is an ideal of
the number field K, because a field has only zero and itself as ideals.
Example 0.1.17. Let K = Q and OK = Z. Given the integral ideal 5Z and x = 4 ∈ Q, whose inverse
is 1

4 , the corresponding fractional ideal in Q is 5
4Z.

The product of two fractional ideals can be defined analogous to the product of twoFrac ideal
product

integral ideals.
That is, for fractional ideals I and J ,

IJ :=

{
n∑
i=1

aibi | ai ∈ I and bi ∈ J, n ∈ N

}
.

It is also easy to check that the product of two fractional ideals is still a fractional ideal.

The fractional ideals in a number field K form a multiplicative group. To see this, we have demon-
strated that they are closed under multiplication and the unit ideal (1) = OK is the multiplicative
identity in the group. It remains to show that every fractional ideal has an inverse in the group. This is
done via the following two lemmas. The first lemma states that every prime ideal ofOK has an inverse.
The second lemma states that every non-zero integral ideal of OK has an inverse, which uses the result
of the first lemma and the fact that every prime ideal in OK is also maximal. See Appendix ?? for the
proofs of these two lemmas.
Lemma 0.1.18. If P is a prime ideal in OK , then P has an inverse P−1 = {a ∈ K | aP ⊆ OK} that
is a fractional ideal.
Lemma 0.1.19. Every non-zero integral ideal of OK has an inverse.

The two lemmas combined prove that a fractional ideal has an inverse. For more detail of the proof,
see Theorem 3.1.8 (Stein, 2012). To be more precise, the inverseFrac ideal

inverse
of a fractional ideal I has the form

I−1 = {x ∈ K | xI ⊆ OK}. (3)

In the special case when the product of two fractional ideals is a principal fractional ideal IJ = (x), the
inverse has the form I−1 = 1

xJ .

Theorem 0.1.20.Multiplicative
group

The set of fractional ideals in a number field K is an abelian group under multipli-
cation with the identity element OK .
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A key result of this subsection is that a fractional ideal can also be uniquely factorized into a product
of prime ideals.
Theorem 0.1.21.UFD Let K be a number field. If I is a fractional ideal in K, then there exist prime ideals
p1, . . . , pn and q1, . . . , qm in OK , unique up to ordering, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

The theorem follows from the fact that a fractional ideal has the form I = 1
aJ , where J is an integral

ideal and a ∈ OK . Since both J and (a) are integral ideals of OK , Theorem 0.1.11 implies they have
unique prime ideal factorization.

0.1.3 Applications in Ring LWE

As we will see in Section ??, when working on the hardness proof of the ring LWE problem, it is easier
to view the underlying ring Z[x]/(Φm(x)) as a ring of integers in a cyclotomic number field, as opposed
to the (more direct) interpretation of a ring of polynomials. This perspective change in interpretation is
supported by the following two results.
Theorem 0.1.22. The ring of integers in Q(ζm) is generated by ζm:

OQ(ζm) = Z[ζm].

Theorem 0.1.23. For all m ∈ N, we have

Z[x]/(Φm(x)) ∼= OQ(ζm)

Proof. This is a direct consequence of Theorems 0.1.22 and ??.

We state here two technical lemmas that will be needed in the RLWE result. The first lemma shows
that given two ideals I, J ⊆ R of a Dedekind domainR (e.g., a ring of integersOK of a number fieldK
is a Dedekind domain), it is possible to construct another ideal that is coprime with either one of them.
Lemma 0.1.24. If I and J are non-zero integral ideals of a Dedekind domain R, then there exists an
element a ∈ I such that (a)I−1 ⊆ R is an integral ideal coprime to J .

Proof. Since a ∈ I , the principal ideal (a) ⊆ I . By Theorem 0.1.6, we have I | (a), that is, there is
an ideal M ⊆ R such that IM = (a), so M = (a)I−1 ⊆ R is an ideal of R. We skip the proof of
coprimality. See Lemma 5.5.2 in Stein (2012).

The element a ∈ I can be efficiently computable using CRT in OK . Hence, given two ideals in R,
we can efficiently construct another one that is coprime with either one of them. This corresponds to
Lemma 2.14 in Lyubashevsky et al. (2010). The next lemma is essential in the reduction from K-BDD
problem to RLWE.
Lemma 0.1.25. Let I and J be ideals in a Dedekind domain R and M be a fractional ideal in the
number field K. Then there is an isomorphism

M/JM ∼= IM/IJM.

Proof. Given ideals I, J ⊆ R, by Lemma 0.1.24 we have tI−1 ⊆ R is coprime to J for an element
t ∈ I . Then we can define a map

θt : K → K

u 7→ tu.

This map induces a homomorphism

θt : M → IM/IJM.

First, show ker(θt) = JM . Since θt(JM) = tJM ⊆ IJM , then θt(JM) = 0. Next, show any
other element u ∈ M that maps to 0 is in JM . To see this, if θt(u) = tu = 0, then tu ∈ IJM . To
use Lemma 0.1.24, we re-write it as (tI−1)(uM−1) ⊆ J . Since tI−1 and M are coprime, we have
uM−1 ⊆ J , which implies u ⊆ JM . Therefore, ker(θt) = JM and

θt : M/JM → IM/IJM
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is injective.

Second, show the map is surjective. That is, for any v ∈ IM , its reduction v mod IJM has a
preimage in M/JM . Since tI−1 and J are coprime, by CRT we can compute an element c ∈ tI−1

such that c ≡ 1 mod J . Let a = cv ∈ tM , then a−v = cv−v = v(c−1) ∈ IJM . Let w = a/t ∈M ,
then θt(w) = t(a/t) = a ≡ v mod IJM . Hence, any arbitrary element v ∈ IM satisfies the preimage
of v mod IJM is w mod IM .

In the hardness proof of RLWE as will be shown in Section ??, we can use Lemma 0.1.25 to show
that for R = Z[x]/(Φm(x)), an ideal I and a prime integer q,

R/(q)R ∼= I/(q)I

I∨/(q)I∨ ∼= R∨/(q)R∨,

where R∨ denotes the dual of R that we will define later in Section 0.3.

We end this subsection by looking at the (unique) factorisation of the ideal (q) in the ring of integers
Rq = Zq[x]/(Φm(x)). Since q is prime, the principal ideal generated by it can be split into prime ideals
qi as follows:

(q) =

n/(ef)∏
i=1

qei =

n/(ef)∏
i=1

(q, Fi(ζm))e,

where n = ϕ(m), e = ϕ(q′) is the Euler totient function of q′, the largest power of q that divides m,
f is the multiplicative order of q modulo m/q′, i.e., qf ≡ 1 mod (m/q′), and each qi is generated by
two elements, the prime number q and the monic irreducible factor Fi(x) of the cyclotomic polynomial
Φm(x) =

∏
i(Fi(x))e when splitting over Zq[x] (see Theorem ??). For details, see Chapter 4 Stein

(2012).
Example 0.1.26. For m = 5, the 5th cyclotomic polynomial is

Φ5(x) = x4 + x3 + x2 + x+ 1,

so n = 4 andK = Q(ζ5) the 4-dimensional cyclotomic field. Let q = 19, then we have q′ = 190 = 1 to
be the largest power of q that divides 5. So e = ϕ(1) = 1 and the multiplicative order of 19 mod (4/1)
is f = 2. Assuming we are given how the cyclotomic polynomial splits in Z19[x], i.e.,

Φ5(x) = x4 + x3 + x2 + x+ 1 = (x2 + 5x+ 1)(x2 + 15x+ 1),

then we can split the ideal into prime ideals in the ring of integers R = Z[ζ5] as

(q) = q1q2

=⇒ (19) = (19, (ζ5)2 + 5ζ5 + 1)(19, (ζ5)2 + 15ζ5 + 1).

If we further restrict q ≡ 1 mod m, it follows that f = 1. In addition, it also entails that q′ = 1
and e = 1. In addition, the cyclotomic polynomial Φm(x) = xn + 1 can be split into n linear factors
(x−ωi), where ωi is a primitive mth root of unity in Zq . This satisfies the condition of Theorem ?? for
q and m being coprime.2 Hence, the ideal can be factored as

(q) =
∏

i=1,...,m
gcd(i,m)=1

(q, ζm − ωi)

=
∏
i∈Z∗m

(q, ζm − ωi).

Note the index i is not any integer between 1 and m, but those coprime with m. So for the above
example, when q = 11 ∼= 1 mod 5, the polynomial splits in Z11[x] as

Φ5(x) = (x− 3)(x− 9)(x− 5)(x− 4),

where each 3, 9, 5, 4 is a primitive 5th root of unity in Z11, generated by the 1st, 2nd, 3rd and 4th power
of 3 in mod 11. So the ideal splits as

(q) = q1q2q3q4
=⇒ (11) = (11, ζ5 − 3)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 4).

2Note this also works if q = pk is a prime power coprime with m.
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0.2 Number field embedding

Similar to LWE, the RLWE problem’s hardness is also based on hard lattice problems, except these
are special lattices called ideal lattices. In this subsection, we will study how algebraic objects such
as ring of integers and its ideals are mapped to full-ranked lattices via embeddings. The embedding
we will build is from a number field K to the n-dimensional Euclidean space Rn or a space H that is
isomorphic to Rn. AsOK and its ideals are additive groups, our embedding must preserves the additive
group structure of these objects.

As a degree n polynomial can be uniquely identified by its coefficients, our naive choice of
embedding is by sending a polynomial f = a0 + a1x + · · · an−1xn−1 to a coefficient vector
(a0, a1, · · · , an−1) ∈ Rn. This coefficient embedding is clearly an additive ring homomorphism and
hence satisfies our basic requirements. Furthermore, it is related by a linear transformation to the canon-
ical embedding that will be introduced next. However, the RLWE’s proof and computations do not use
the coefficient embedding. We list some reasons here and leave the details to Section ??.

• Firstly, when working with cyclotomic fields, the canonical embedding makes both polynomial
addition and multiplication efficient component-wise operations (under the point-value repre-
sentation). These operations have simple geometric interpretations that lead to tight bounds.

• Secondly, in the coefficient embedding, specifying the error distribution in RLWE, which is
an n-dimensional Gaussian, requires an n-by-n covariance matrix in general. With the canon-
ical embedding, the error distribution in RLWE takes the simple form of a product of one-
dimensional Gaussians. This dramatically decreases the number of parameters that need to be
taken care of when working with RLWE.

• Finally, the canonical embedding makes the Galois automorphisms simply permutations of
the embedded vector components. This is important for the reduction from decision to search
RLWE, and is not possible with the coefficient embedding.

0.2.1 Canonical embedding

Let K = Q(α) = Q[x]/(f), where α is a primitive element of the field (by Theorem ??) and f is its
minimal polynomial of degree n. We now look at an alternative embedding of K into Cn. Since f is
monic and irreducible in Q[x], and Q has characteristic 0, f is separable by Theorem ?? so it has n
distinct roots {α1, . . . , αn}. For each root αi, we define a map σi from K to C sending α to αi by

σi : K → Q(αi) ⊆ C
σi(a0 + a1α+ a2α

2 + · · ·+ an−1α
n−1) = a0 + a1αi + a2α

2
i + · · ·+ an−1α

n−1
i ,

where ai ∈ Q. Note that σi fixes Q in that σi(x) = x for all x ∈ Q and f(σi(α)) = 0 so σi is an
automorphism (of the field extension). One can show that {σi}ni=1 are the only embeddings of K into
C, which implies the embeddings are independent of the choice of the primitive element α.

Since the roots of f consist of real and complex numbers, we can distinguish these embeddings as
real and complex embeddings. If σi(α) ∈ R, then it is a real embedding, otherwise it is a complex
embedding. By the Complex Conjugate Root Theorem, which states that the complex roots of real
coefficient polynomials are in conjugate pairs, we know the images of the complex embeddings are in
conjugate pairs. Let s1 be the number of real embeddings and s2 be the number of conjugate pairs of
complex embeddings, then the total number of embeddings is n = s1 + 2s2. Let {σi}s1i=1 be the real
and {σj}nj=sl+1 be the complex embeddings, where σs1+j = σs1+s2+j are in the same conjugate pair
for each j ∈ [1, . . . , s2], then we have the following definition of a canonical embedding.

Definition 0.2.1.Canonical
embedding

A canonical embedding σ of an n-dimensional number field K is defined as

σ : K → Rs1 × C2s2 ⊆ Cs1 × C2s2 ∼= Cn

σ(r) 7→ (σ1(r), . . . , σs1(r), σs1+1(r), . . . , σs1+2s2(r)). (4)

By its definition, the canonical embedding maps a number field to an n-dimensional space,Canonical
space

named
canonical space, which is expressed as

H =
{

(x1, . . . , xn) ∈ Rs1 × C2s2 | xs1+j = xs1+s2+j , for all j ∈ [s2]
}
.
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The canonical space H can be shown to be isomorphic to Rn by establishing a one-to-one correspon-
dence between the standard basis of Rn and a basis of H as the row vectors in the following matrix

B =

Is1×s1 0 0

0 Is2×s2 iIs2×s2
0 Is2×s2 −iIs2×s2

 .

The matrix Is1×s1 is the s1 by s1 identity matrix.3 The image σ(r) ∈ H can then be written in terms of
this basis as a real vector

τ(r) = (σ1(r), . . . , σs1(r),

Re(σs1+1(r)), . . . , Re(σs1+s2(r)), Im(σs1+1(r)), . . . , Im(σs1+s2(r))) (5)

by taking the real and complex parts from two conjugate complex embeddings respectively. Taking the
dot product of each row vector in B with τ(r), we get back to σ(r) in Equation 4, that is,

σ(r) = B · (τ(r))T .

Here are some examples to illustrate canonical embedding, canonical space and its basis.

Example 0.2.2. WhenK = Q(
√

2) is a quadratic field. The minimal polynomial of
√

2 is x2−2, which
has two roots ±

√
2. The canonical embedding consists two real embeddings only and is defined as

σ(
√

2) = (
√

2,−
√

2).

The basis of the canonical space H is

B =

(
1 0

0 1
.

)
Given the integral basis {1,

√
2} of K, the basis vectors are mapped to the canonical space H and can

be written in terms of the basis of H as real vectors

τ(1) = (1, 1)

τ(
√

2) = (
√

2,−
√

2),

which form a Z-basis of the image σ(OK), that is, σ(OK) = {a(1, 1) + b(
√

2,−
√

2) | a, b ∈ Z}.
Example 0.2.3. When K = Q(ζ8) is the 8th cyclotomic field. The 8th primitive root of unity ζ8 =√

2
2 + i

√
2
2 and its minimal polynomial is the 8th cyclotomic polynomial Φ8(x) = x4 + 1. The roots of

Φ8(x) are

ζ8 =

√
2

2
+ i

√
2

2
, ζ38 = −

√
2

2
+ i

√
2

2
,

ζ58 = −
√

2

2
− i
√

2

2
, ζ78 =

√
2

2
− i
√

2

2
.

The canonical embedding consists of exactly four complex embeddings, i.e., σ = (σ1, σ2, σ3, σ4),

σ1

(√
2

2
+ i

√
2

2

)
=

√
2

2
+ i

√
2

2
, σ2

(√
2

2
+ i

√
2

2

)
= −
√

2

2
+ i

√
2

2
,

σ3

(√
2

2
+ i

√
2

2

)
=

√
2

2
− i
√

2

2
, σ4

(√
2

2
+ i

√
2

2

)
= −
√

2

2
− i
√

2

2
,

where σ1 = σ3 and σ2 = σ4 are in conjugate pairs. The basis of the canonical space H is

B =


1 0 i 0

0 1 0 i

1 0 −i 0

0 1 0 −1

 .

3Note in Lyubashevsky et al. (2010), the row vectors are multiplied by 1√
2

to make them an orthonormal basis,
i.e., B is a unitary matrix (i.e., BB∗ = I , where B∗ is B’s conjugate transpose).
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By Equation 5, the canonical embedding of the primitive element ζ8 can be written in terms of this basis
as the real vector

τ

(√
2

2
+ i

√
2

2

)
= (Re(σ1), Re(σ2), Im(σ1), Im(σ2)) =

(√
2

2
,−
√

2

2
,

√
2

2
,

√
2

2

)
.

By multiplying each row of B with this expression, we get back to the canonical embedding σ =
(σ1, σ2, σ3, σ4).

Given the canonical embedding, it allows us to talk about the geometric norm of an algebraic element
x ∈ K. More precisely, we can define the Lp-normLp-norm of x by looking at the Lp-norm of its image σ(x)
that is embedded into the real space Rn

||x||p = ||σ(x)||p =


(∑

i∈[n] |σi(x)|p
)1/p

if p <∞,
maxi∈[n] |σi(x)| if p =∞.

(6)

In the next example, we illustrate the Lp-norm of a root of unity in a cyclotomic field.
Example 0.2.4. Let K = Q(ζn) be the nth cyclotomic field and σ : K → H be its canonical embed-
ding. The cyclotomic polynomial Φn(x) is the minimal polynomial of ζn and it has only complex roots
for n ≥ 3, as the two real roots are non-primitive. Since the Galois group Gal(K/Q) ∼= (Z/nZ)∗ is
isomorphic to the multiplicative group (Theorem ??), the complex embeddings are given by σi(ζn) = ζin
for i ∈ (Z/nZ)∗ and n = 2s2 = |(Z/nZ)∗|. Since the primitive roots of unity are closed under σi,
the magnitude |σi(ζjn)| = 1. So the LP -norm of an nth root of unity is ||ζjn||p = n1/p for p < ∞ or
||ζjm||∞ = 1.

We have shown that the canonical embedding σ sends a number field to a space isomorphic to Rn.
When restricted to the ring of integers OK that is closed under addition, we would like to see what σ
does to preserve the discreteness and the additive group structure of OK . The following theorem states
that the canonical embedding maps OK to a full-rank lattice.
Theorem 0.2.5.τ(OK) is

lattice
Let K be an n-dimensional number field, then σ(OK) is a full-rank lattice in Rn.

Proof. Let {e1, . . . , en} be an integral basis of OK , then every element x ∈ OK can be written as
x =

∑n
i=1 ziei, where zi ∈ Z. The embedding of x can then be written as σ(x) =

∑n
i=1 ziσ(ei),

where the coefficients are fixed because σ fixes Q. Hence, σ(OK) is also a Z-module generated by
{σ(e1), . . . , σ(en)}.

By definition, a lattice is a free Z-module. If we can show {σ(e1), . . . , σ(en)} is a basis of σ(OK),
then σ(OK) is a free Z-module. To do so, write each σ(ei) in terms of the canonical space basis
according to Equation 5 as a real vector, so we have the following basis matrix for σ(OK)

NT =

 σ1(e1) ··· σs1
(e1) Re(σs1+1(e1)) ··· Re(σs1+s2

(e1)) Im(σs1+1(e1)) ... Im(σs1+s2
(e1))

...
...

...
...

...
...

σ1(en) ··· σs1
(en) Re(σs1+1(en)) ··· Re(σs1+s2

(en)) Im(σs1+1(en)) ... Im(σs1+s2
(en))

 .

Then show that the matrix has a non-zero determinant, and consequently the rows are independent. By
Equation 4 of canonical embedding, we can write the images of the integral basis {e1, . . . , en} under
the canonical embedding as the matrix

MT =

 σ1(e1) ··· σs1
(e1) σs1+1(e1) σs1+1(e1) ··· σs1+s2

(e1) σs1+s2
(e1)

...
...

...
...

...
...

σ1(en) ··· σs1
(en) σs1+1(en) σs1+1(en) ··· σs1+s2 (en) σs1+s2 (en)

 .

The two matrices are of the same dimension and their determinants are related by

detN =
1

2s2
detM, (7)

so it remains to show detM 6= 0. If a rational matrix A changes a basis of K to another basis by

e′j =
∑
k

Akjek,

9
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then the above matrix M is also changed to a new matrix M ′ = MA. We know K always has a power
basis {1, r, . . . , rn−1} (Theorem ??) and the matrix MT in terms of the power basis is a Vandermonde
matrix with a non-zero determinant as the powers of r are all distinct. Then we can conclude that the
above matrix M has non-zero determinant and so does the matrix N .

An important corollary of Theorem 0.2.5 is that every fractional ideal of K is also mapped to a
full-rank ideal.

Corollary 0.2.6. If I is a fractional ideal in an n-dimensional number field K, then σ(I) is a full-rank
lattice in Rn.

Proof. Given I is a fractional ideal in K, for a non-zero integer m ∈ K we have mOK ⊆ I ⊆ 1
mOK ,

and both the subset and superset of I are full-rank lattices in Rn, so is I . See Lemma 7.1.8 in Stein
(2012) for more detail.

As mentioned earlier, the canonical embedding allows polynomial addition and multiplication to be
done component-wise efficiently, which is a convenient feature for both the deduction from search to
decision RLWE and polynomial computations. We explain next why such a nice feature comes with
the canonical embedding. We know a polynomial can be uniquely represented by both the coefficient
and point-value representations, and the latter allows us to multiply two polynomials component-wise
Cormen et al. (2001). To allow efficient transformation O(n log n) between the two representations, we
should evaluate a degree n polynomial at the n-th roots of unity, which is essentially what fast Fourier
transform (FFT) does. We know both the n-th cyclotomic field K and its ring of integers OK have a
power basis B = {1, ζn, . . . , ζϕ(n)−1n }, which consists of the n-th roots of unity just as we need. We
can use the power basis to build a Vandermonde matrix MT . Since K can also be interpreted as a
polynomial ring quotient by the ideal (f), an element a ∈ K can be viewed as a(x) =

∑n−1
i=0 aix

i and
its image under the embedding is σi(a(x)) = a(σi(x)). Hence, each embedding σi(a(x)) is equivalent
to evaluate a(x) at σi(x). Therefore, we have

MT · (a0, . . . , an−1)T = σ(a) = B · (τ(a))T .

Therefore, for a polynomial a ∈ OK , its image σ(a) (or τ(a) in terms of the basis B) is precisely its
point-value representation evaluated at the n-th roots of unity.

In short, when using the canonical embedding, the image of K is a lattice with a power basis
consisting of the primitive roots of unity. Since each element inK is also a polynomial, when converting
to the point-value representation, the primitive roots of unity are the precise points that are needed.
So adding or multiplying two polynomials in the point-value representation is equivalent to adding or
multiplying two elements σ(K) w.r.t. the power basis.

0.2.2 Geometric quantities of ideal lattice

We know from the previous subsection that a fractional ideal I in a number field is mapped by a canon-
ical embedding σ to a lattice in the Euclidean space, called ideal lattice. In this subsection, we will go
through some geometric quantities of I (i.e., its ideal lattice σ(I)) including its determinant and mini-
mum distance. The results in this subsection are directly related to the gap (or approximation) factors
of hard ideal lattice problems.

To begin with, we first state the main result that is directly relevant to the RLWE’s hardness proof.
Recall that the minimum distance λ1(L) of a lattice L is the length of the shortest non-zero vector in L,
where the length is measured by Lp-norm as defined in Equation 6.

Lemma 0.2.7. Let I be a fractional ideal in an n-dimensional number field K, then its minimum
distance measured by Lp-norm satisfies

n1/p ·N(I)1/n ≤ λ1(I) ≤ n1/p ·N(I)1/n ·
√

∆
1/n
K . (8)

Here, N(I) is the norm of the fractional ideal and ∆K is the discriminant of the number field K.
We will introduce these concepts next, which not only helps to understand the lemma, but give insights
about the algebraic structures of OK and its ideals under the canonical embedding.

10
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Given a subgroup H of G, the Lagrange’s Theorem says that the order of G satisfies |G| = |G :
H||H|, where |G : H| is the index of H that measures the number of cosets of H in G. If H is a normal
subgroup, then the index is equivalent to the order of the quotient group G/H . Since an ideal I of OK
is an additive normal subgroup and it has a geometric interpretation due to the canonical embedding,
we relate its index to the norm as next.
Definition 0.2.8.Ideal norm Let I be a non-zero ideal of OK . The norm of I , denoted by N(I), is the index of I
as a subgroup of OK , i.e., N(I) = |OK/I|.

As for the norm of number field elements (Appendix ??), the norm of ideals is also multiplicative.
That is, N(IJ) = N(I)N(J). If I = J/d is a fractional ideal in K with the integral ideal J , then its
norm is

N(I) = N(dI)/|N(d)| (9)

Example 0.2.9. When OK = Z, the integral ideal J = 5Z and the fractional ideal I = J/4 = 5
4Z, the

norm N(I) = N(J)/|N(4)| = 5/4.

For the fractional ideal I and integral ideal dI with d ∈ OK , we have dx ∈ dI for any non-zero
x ∈ I . Hence, when viewed as subgroups, their indices satisfies [OK : (dx)] ≥ [OK : dI] and it
follows N(dx) ≥ N(dI). By Equation 9 and the multiplicity of norm, we have N(x) ≥ N(I) for any
non-zero x ∈ I . Combine this with Equation 6 of Lp-norm, we can prove the lower bound of λ1(I).
The upper bound is proved by the discriminant of K and Minkowski’s First Theorem (Theorem ??; see
also Lemma 6.1 Peikert and Rosen (2007) for the proof of the upper bound).

The discriminant of a number field loosely speaking measures the size of the ring of integers OK .
Without loss of generality, for the basis elements e1, . . . , en of K, define the n by n matrix

M =


σ1(e1) σ1(e2) · · · σ1(en)

σ2(e1) σ2(e2) · · · σ2(en)
...

... · · ·
...

σn(e1) σn(e2) · · · σn(en)

 ,

where σ = (σ1, . . . , σn) is the canonical embedding of K. By the same argument in the proof of
Theorem 0.2.5, we know the determinant of M is non-zero. We know this matrix is related to the basis
matrix N of the ideal lattice and their determinants satisfy Equation 7. This matrix looks just like the
basis matrix for a lattice that was introduced in Section ??. Now we are ready to define the discriminant
of K.
Definition 0.2.10. Let K be an n-dimensional number field with an integral basis {e1, . . . , en}. The
discriminant∆K of K is

∆K = discK/Q(e1, . . . , en) = det(M)2.

An important property of number field discriminant is that it is invariant under the choice of an
integral basis. This can be seen from the following lemma and corollary.
Lemma 0.2.11. Suppose x1, . . . , xn, y1, . . . , yn ∈ K are elements in the number field and they are
related by a transformation matrix A, then

discK/Q(x1, . . . , xn) = det(A)2discK/Q(y1, . . . , yn).

Since the change of integral basis matrix A is an unimodular matrix, i.e., detA = ±1, we conclude
that discriminant is an invariant quantity.
Corollary 0.2.12.Invariant ∆(K) Suppose {e1, . . . , en} and {e′1, . . . , e′n} are both integral bases of the number field
K, then

discK/Q(e1, . . . , en) = discK/Q(e′1, . . . , e
′
n).

We finish this subsection by making some observations about ∆K . First, the determinant of the
basis matrix M is equivalent to the fundamental domain of σ(OK). This entails that the absolute4

4Although it is defined as the square of a matrix determinant, discriminant can be negative as the matrix entries
can be complex numbers.
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discriminant of K measures the geometric sparsity of OK . Larger |∆K | implies larger detM , so the
more sparse the ideal lattice is.

Second, equation 7 says |detN | = 1
2s2 |detM |. Since N is the basis matrix of the ideal lattice

σ(OK), by definition of field discriminant, this equation implies

det(σ(OK)) =
1

2s2

√
|∆K |. (10)

Finally, an integral lattice I is an additive subgroup of OK so Lagrange’s Theorem entails |OK | =
|OK : I||I|. The canonical embedding σ is an isomorphism between OK and I to the corresponding
ideal lattices. Moreover, I being a subgroup is sparser than OK when mapped by σ, so has larger
determinant. Hence, we haveIdeal lattice

determinant
det(σ(I)) = [σ(OK) : σ(I)] det(σ(OK))

= N(I) det(σ(OK))

=
1

2s2
N(I)

√
|∆K | (11)

Equation 11 also holds for a fractional ideal J = I/d. Substitute the integral ideal I = dJ into
the equation will incur a factor d on both sides, because det(σ(dJ)) = ddet(σ(J)) and N(dJ) =
N(d)N(J) = dN(J).

0.3 Dual lattice in number field

In the previous subsection, we have built a connection between a number field K and its image
H = σ(K) under the canonical embedding σ and shown that H ∼= Rn. In this subsection, we dis-
cuss how dual lattices in K are defined. The motivation is to understand the structure of dual lattices
of an ideal lattice σ(I). The notion of dual appears in crucial parts of the development of lattice-based
cryptography, including the definition of smoothing parameters of a lattice (Definition ??) and the gen-
eral definition of RLWE distribution (Definition ??).
Definition 0.3.1.Lattice in K A lattice in an n-dimensional number field K is the Z-span of a Q-basis of K.

For lattices in Rn, dot product is an obvious metric between two geometric vectors. For lattices in a
number field, we need a more general inner product that can be obtained through the trace operator.
Definition 0.3.2. Given a canonical embedding of a number field K

σ : K → Rs1 × C2s2

σ(α) 7→ (σ1(α), . . . , σn(α)),

the trace of an element α ∈ K is defined asTrace operator

TrK\Q : K → Q

TrK/Q(α) =

n∑
i=1

σi(α).

From that, we obtain the trace inner product as follows:

TrK/Q(xy) =
∑

σi(xy) =
∑

σi(x)σi(y) = 〈σ(x), σ(y)〉. (12)

Definition 0.3.3.Dual lattice Let L be a lattice in a number field K. Its dual lattice is

L∨ = {x ∈ K | TrK/Q(xL) ⊆ Z}.

Example 0.3.4. The lattice L = Z[i] in the number field K = Q(i) has a basis B = {1, i}. The dual
lattice L∨ = 1

2Z[i] with a basis B∨ = { 12 ,
i
2}.

The dual of a number field lattice is also a lattice. Here are some properties of the dual in Rn that
also hold true for dual in number fields.
Corollary 0.3.5. For lattices in a number field K, the following hold:

12
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1. L∨∨ = L,

2. L1 ⊆ L2 ⇐⇒ L∨2 ⊆ L∨1 ,

3. (αL)∨ ⇐⇒ 1
αL
∨, for an invertible element α ∈ K.

The following theorem relates the dual lattice to differentiation and provides an easier way of com-
puting the dual basis and dual lattice from a given lattice.

Theorem 0.3.6.Dual basis LetK = Q(α) be an n-dimensional number field with a power basis {1, α, . . . , αn−1}
and f(x) ∈ Q[x] be the minimal polynomial of the element α, which can be expressed as

f(x) = (x− α)(c0 + c1x+ · · ·+ cn−1x
n−1).

Then the dual basis to the power basis relative to the trace product is
{

c0
f ′(α) , . . . ,

cn−1

f ′(α)

}
. In particular,

if K = Q(α) and the primitive element α ∈ OK is an algebraic integer, then the lattice L = Z[α] =
Z+Zα+ · · ·+Zαn−1 and its dual are related by the first derivative of the minimal polynomial, that is,

L∨ =
1

f ′(α)
L.

Example 0.3.7. An important application of this theorem in RLWE is when K = Q[ζm] is the m-th
cyclotomic number field, where m = 2n = 2k > 1 is a power of 2. Let the lattice L = OK = Z[ζm].
The minimal polynomial of ζm is f(x) = xn + 1, whose derivative is f ′(x) = nxn−1. By Theorem
0.3.6,

L∨ = (Z[ζm])∨ =
1

f ′(ζm)
Z[ζm] =

1

nζn−1m

Z[ζm] =
1

n
ζn+1
m Z[ζm] =

1

n
L.

The second last equality is because the roots of unity form a cyclic group so ζ−(n−1)m = ζn+1
m .

This example shows an essential property of cyclotomic number fields when choosing appropriate
parameter settings. It says the ideal lattice σ(OK) and its dual are related by only a scaling factor, so
there is no difference working in either domain when defining the RLWE problem. We will see more
detail in the next section.

We further study the ideal lattice OK in a general number field. By definition, the dual of OK is

O∨K = {x ∈ K | TrK/Q(xOK) ⊆ Z}.

Since each element in OK is an algebraic integer, in that has an integer trace.5 So on the one hand,
OK ⊆ O∨K . On the other hand, not all elements with integer traces are in O∨K . The next theorem shows
that these elements need to form a fractional ideal.

Theorem 0.3.8.O∨K is frac
ideal

The dual lattice O∨K is the largest fractional ideal in K whose elements have integer
traces.

Theorem 0.3.9. For a fractional ideal I inK, its dual lattice is a fractional ideal satisfying the equation
I∨ = I−1O∨K .

We have seen the inverse of a fractional ideal in Equation 3, it is tempting to see if the inverse of
the dual O∨K (which is also a fractional ideal) is any special. By definition of fractional ideal inverse
(Equation 3), we have

(OK)−1 = {x ∈ K | xOK ⊆ OK} = OK
(O∨K)−1 = {x ∈ K | xO∨K ⊆ OK}.

Since OK ⊆ O∨K , their inverses satisfy (O∨K)−1 ⊆ OK . Unlike the dual which is a fractional ideal
and not necessarily within OK , this inclusion makes (O∨K)−1 an integral ideal, which is also called the
different ideal.Different ideal For example, let K = Q(i) and OK = Z[i]. The dual ideal is O∨K = Z[i]∨ = 1

2Z[i],
so the different ideal is DK = ( 1

2Z[i])−1 = 2Z[i].

5This can be verified by taking the power basis {1, r, . . . , rn−1} of K which is also a Z-basis of OK . Each
x ∈ OK can be written as x = c0 + c1r + · · ·+ cn−1r

n−1. By definition, only Tr(c0) ∈ Z and the rest are 0.

13
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In the special case when OK has a power basis, Theorem 0.3.6 can also be expressed in terms of
different ideal because

O∨K =
1

f ′
OK

=⇒ f ′O−1K = (O∨K)−1

=⇒ (f ′) = DK
When f = xn + 1, the last equality implies DK = nOK .See Theorem ?? in Appendix ?? for formal
statements of these results.
Lemma 0.3.10.DK = nOK For m = 2n = 2k ≥ 2 a power of 2, let K = Q(ζm) be an mth cyclotomic number
field and OK = Z[ζm] be its ring of integers. The different ideal satisfies DK = nOK .

This lemma plays an important role in RLWE in the special case where the number field is an m-th
cyclotomic field. It implies that the ring of integers n−1OK = O∨K and its dual are equivalent by a
scaling factor. Hence, the secret polynomial s and the random polynomial a can both be sampled from
the same domain Rq , unlike in the general context where the preference is to leave s ∈ R∨q in the dual.
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