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Computational complexity theory is the foundation of computational security of modern cryptogra-
phy by allowing one to emphasize the security of a cryptosystem by drawing an efficient reduction from
a computationally hard problem (that either has been proved or is believed with high confidence to be
unsolvable in a reasonable time, e.g., polynomial time). That being said, a cryptosystem that is provably
secure is still vulnerable to real-world attacks, depending on what threat model was considered, how
close to reality the underlying security definitions and assumptions are and so on.

In this section, ! we start by introducing some basic definitions in computational complexity theory,
then go on to talk about inapproximability, which are variants of the standard decision and optimization
problems and commonly used to prove the computational security of cryptosystems. We then introduce
gap problems, which are generalization of decision problems and proving their hardness is a useful
technique of proving inapproximability. We finish the chapter by briefly introducing Ajtai (1996)’s
worst-case to average-case reduction. Ajtai’s work is considered as the first published average-case
problem whose hardness is based on the worst-case hardness of some well-known lattice problems.

0.1 Basic time complexity classes

The following concepts are introduced under the assumption that a general purpose computer is of the
form of a Turing machine. The primary reference book of this subsection is Sipser (2013).

A language (or decision problem) is a set of strings that are decidable by a Turing machine. We use
Y to denote the alphabet and X* to denote the set of all strings over the alphabet X of all lengths. A
special case is when ¥ = {0, 1} and ¥* = {0, 1}* is the set of all strings of Os and 1s of all lengths. In
this case, a language A = {z € {0,1}* | f(z) = 1}, where f : {0,1}* — {0, 1} is a Boolean function.

Let M be a deterministic Turing machine that halts on all inputs. We measure the time complexity
or running time of M by the function ¢t : N — N, where ¢(n) is the maximum number of steps that
M takes on any input of length n. Generally speaking, ¢(n) can be any function of n and the exact
number of steps may be difficult to calculate, so we often just analyse ¢(n)’s asymptotic behaviour by
taking its leading term, denoted by O(t(n)). We also relax its codomain by letting ¢ : N — R™ be a
non-negative real valued function.

It is worth mentioning that when analysing the time complexity of a function, we often consider its
time complexity in the worst case, i.e., the longest running time of all inputs of a particular length n.
At the end of this chapter, we will emphasize the importance of the worst-case complexity in the proof
of security of modern cryptosystems. We will give a clue of how this was achieved by Ajtai (1996)
through an average-case to worst-case reduction.

Definition 0.1.1. The time complexity class, TIME(t(n)), is defined as the set of all languages that
are decidable by a Turning machine in time O(t(n)).

Obviously, ¢ can be any function, e.g., logarithm, polynomial, exponential, etc. In practice, poly-
nomial differences in running time are considered to be much better than exponential differences due
to the super fast growth rate of the latter. For this reason, we separate languages into different classes
according to their worst case running time on a deterministic single-tape Turing machine.

Definition 0.1.2. P is the class of languages that are decidable in polynomial time by a deterministic
single-tape Turing machine, i.e.,

P = TIME(n*).
keN

Some problems are computationally hard, so cannot be decided by a deterministic single-tape Turing
machine in polynomial time. But given a possible solution, sometimes we can efficiently verify whether
or not the solution is genuine. The length of the solution has to be polynomial in the length of the input
string length, for otherwise the verification process cannot be done efficiently. Based on the ability to
efficiently verify, we can define the complexity class NP.

Definition 0.1.3. NP is the class of languages that can be verified in polynomial time.

'This section is part of the work A Tutorial Introduction to Lattice-based Cryptography and Homomorphic
Encryption by the authors Yang Li, Kee Siong Ng, Michael Purcell from the School of Computing, Australian
National University @2022.
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Sometimes, a problem can be solved by reducing it to another problem, whose solution can be
found relatively easier, provided the reduction between the two problems is efficient. For example, a
polynomial time reduction is often acceptable.

Definition 0.1.4. A language A is polynomial time reducible to another language B, written as A <p
B, if a polynomial time computable function f : ¥* — X exists, where for every w,

weA < f(w) € B.

A polynomial time reduction A <p B implies A is no harder than B, so if B € P then A € P.
Based on this reduction, we can define another complexity class.

Definition 0.1.5. A language B is NP-complete if it is in NP and every problem in NP is polynomial
time reducible to B.

Essentially, we are saying that NP-complete is the set of the hardest problems in NP. There are,
however, hard problems that are not in NP such as an optimization problem. Given a solution of an
optimization problem, it is often not trivial to verify the solution is optimal among all the answers,
so this type of problems are not polynomial time verifiable and hence not in NP. For these problems,
we can define a similar complexity class as NP-complete but without requiring their solutions to be
polynomially checkable.

Definition 0.1.6. A language is NP-hard if every problem in NP is polynomial time reducible to it.

The two terms NP-complete and NP-hard are sometimes used interchangeably because an optimiza-
tion problem can also be formed as a decision problem. For example, instead of asking for the shortest
route from the travelling salesman problem, we can ask whether there exists a route that is shorter than
a threshold.

Many optimization problems are NP-hard, which means there is no polynomial time solution under
the assumption P £ NP. Hence, when an answer for an NP-hard problem is needed, the fallback is to
use an approximation algorithm to compute a near-optimal solution that is within an acceptable range.
For a NP-hard problem, it is sometimes easier to build a cryptosystem based on its approximated version
rather than the NP-hard problem itself. For this reason, cryptographers are concerned about whether or
not an optimization problem is hard to be approximated within a certain range. This brings us to the
study of the hardness of approximation or inapproximability in the next subsection.

0.2 Hardness of approximation

An optimization problem aims at finding the optimum result of a computational problem. This optimum
result can either be the maximum or minimum of some value. Throughout this section, we focus on
minimization problems only. The same results also hold for maximization problems. > In the previous
section, we said an optimization problem can be made into a decision problem by comparing the solution
with a threshold. More formally, it is defined as the next.

Definition 0.2.1. An NP-optimization (NPO) problem is an optimization problem such that

* all instances and solutions can be recognized in polynomial time,
* all solutions have polynomial length in the length of the instance,

* all solution’s costs can be computed in polynomial time.

For a minimization problem in NPO, its decision version asks “Is OPT'(z) < ¢?”, where OPT (x)
is the unknown optimal solution (or its cost, we use interchangeably) to the instance z. For example, in
the maximum clique problem, an instance is a graph, an optimal solution is the maximum clique in the
given graph and its cost is the clique size. Given an NPO problem, its decision version is an NP problem,
so NPO is an analogy of NP but for optimization problems. On the other hand, PO (P-optimization)
problem is the set of optimization problems whose decision versions are in P, such as finding the shortest
path.

Lecture 18: Gap Inapproximability, 6.892 Algorithmic Lower Bounds: Fun with Hardness Proofs (Spring
2019), Erik Demaine, available at http://courses.csail.mit.edu/6.892/springl9/lectures/
L18.html


http://courses.csail.mit.edu/6.892/spring19/lectures/L18.html
http://courses.csail.mit.edu/6.892/spring19/lectures/L18.html

c-approx

c-gap

c-gap implies
inapprox

A PREPRINT - JUNE 19, 2022

Definition 0.2.2. An algorithm ALG for a minimization problem is called c-approximation algorithm
for ¢ > 1 if for all instances x, it satisfies

cost(ALG(x))

cost(OPT(x)) s M

The ratio ¢ is not necessarily a constant, it can be any function of the input size, i.e., ¢ = f(n) for
an arbitrary function f(-). Practically, we prefer a near optimal solution ALG(x) such that the ratio ¢
is as small as possible or at least does not grow quickly in the input size. This, however, may not be
possible for some problems such as the maximum clique problem, whose best possible ratio is O(n!=¢)
for small ¢ > 0. From a provable security’s perspective, the smaller the ratio c is, the harder the c-
approximation problem is. This leads to a cryptosystem with higher security because it requires more
time and computational resources for an attacker to break the system.

For a given ¢ = f(n), there are different ways of proving c-approximating a problem is hard. One
way is by proving a c-gap problem is hard, which is in direct analogy to the c-approximation problem
in hand. This way, if the gap problem is hard, then the c-approximation problem is also hard.

Definition 0.2.3. For a minimization problem, a c-gap problem (where c > 1) distinguishes two cases
Sor the optimal solution O PT(x) of an instance x and a given k as follows:

* x is an YES instance if OPT (z) < k,
» xis an NO instance if OPT (z) > ¢ - k.

The value £ is a given input. For example, in the c-gap version of the shortest vector problem,
we can set k = A1(L) to be the shortest vector in a given lattice L. Intuitively, a c-gap problem is a
decision problem where the unknown optimal solution O PT of the corresponding optimization problem
is mapped to the opposite side of a gap. It is, however, different from a decision problem in the sense
that there is a gap between k and ¢ - k.

The connection between c-gap and c-approximation problems is that if a c-gap problem is proved
to be hard, then the corresponding c-approximation problem is also hard. In other words, there is a
reduction from a c-gap problem to a c-approximation problem. The proof is straightforward. Assuming
the problem can be c-approximated in polynomial time by an algorithm A, so for an input x we have
OPT(x) < A(z) < ¢- OPT(z). If z is a YES instance of the gap problem, then

OPT(z) <k = A(x) <c-OPT(z)<c-k.

If z is a NO instance, then
OPT(xz)>c-k = A(z)>c-k.

Either way the instance = can be distinguished easily using the decision procedure A(z) < ¢ - k.

Gap and approximation lattice problems are the foundation of provable security for latticed-based
cryptosystems. We will see more of these problems in ?? and some of their cryptographical applica-
tions in the hardness proofs of the short integer solution problem, learning with error problem and ring
learning with error problem.

0.3 Average-case hardness

So far, we have introduced the time complexity classes P and NP in the worst case scenario. That is,
the longest running time over all inputs at a given input length. A problem that is hard to be solved in
polynomial time in the worst case is known as worst-case hard. There is another related concept called
average-case hardness, which is stronger than worst-case hardness, in the sense that the former implies
the latter but not vice versa. To finish section, we briefly discuss the critical role of average-case hard
problems for cryptography and how they can be constructed by a worst-case to average-case reduction
that was achieved in Ajtai (1996).

Without going into the details of average-case problems, we state some remarks (Chapter 18 (Arora
and Barak, 2009)) to help the reader to get an intuitive understanding of these problems. First, an
average-case problem consists of a decision problem and a probability distribution, from which inputs
can be sampled in polynomial time. Such a problem is called a distributional problem. This is differ-
ent from a worst-case decision problem, where all inputs are considered when determining its hardness.
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Second, the first remark entails that average-case complexity is defined with respect to a specific distri-
bution over the inputs. This suggests that a problem may be difficult with one distribution but easy with
another distribution. For example, integer factorization may be difficult for large prime numbers, but
easy for small integers. Hence, which probability distribution is used is crucial for the hardness of the
integer factorization problem. Finally, average-case complexity has its own complexity classes distP
and distNP, which are the average-case analogs of P and NP, respectively.

To prove a cryptosystem is computationally secure, one could build an efficient reduction from a
known worst-case problem to it, so that if the cryptosystem can be attacked successfully, such an attack
model provides a solution to the worst-case problem. However, knowing alone the underlying problem
is worst-case hard is not sufficient to build a secure cryptosystem in real-world, because many of the
system’s instances may correspond to easy instances of the worst-case problem, which can be solved
efficiently.

For this reason, an ideal situation is when a cryptosystem’s security is based on an average-case
problem and the exact distribution to sample hard instances is known. But this is hard to achieve. It
is more difficult to prove that a certain distribution generates only hard instances, because this would
imply the problem is also worst-case hard. An alternative is to construct an average-case problem,
such that its instances correspond to the hard instances in a worst-case problem. This is known as the
worst-case to average-case reduction. A visual representation of this type of constructions is illustrated
in Figure 1. In this figure, a random cryptographic instance corresponds to an average-case instance.
By construction, it is almost always true that an average-case instance links to a hard instance of some
worst-case problem. This reduction implies that if the worst-case problem is known or believed (in high
confident) to be hard, then the cryptosystem is guaranteed to be secure with high probability.

Reductions
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Figure 1: A demonstration of a cryptosystem’s computational security is based on an average-case
problem. Each cryptographic instance x; corresponds to a random average-case instance a;. Almost all
random instances in the average-case problem can be mapped with the hard instances in a worst-case
problem. There may be a fraction of average-case instances (colored in red) that can be solved easily, so
their solutions entail solutions of the worst-case problem. But the fraction of such instances is negligible.
The hard and easy instances in the worst-case problem are colored blue and white, respectively. The
dashed lines indicate the worst-case to average-case reduction is random.

The work by Ajtai (1996) served exactly this purpose by introducing the short integer solution (SIS)
problem and proving that SIS is an average-case problem with polynomial time reductions from three
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worst-case lattice problems to it. This work is knowable the first worst-case to average-case reduction.
The significant implication of Ajtai’s work in cryptography is the fact that it laid the foundation for
the security of modern cryptosystems to be based on worst-case problems (via average-case problems).
More importantly, this work sparked a number of important following up works including the learning
with error and ring learning with error problems that advanced lattice-based cryptography to a new era.

References

M. Ajtai. Generating hard instances of lattice problems. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing, pages 99—108, 1996.

S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press,
2009.

M. Sipser. Introduction to the Theory of Computation. Course Technology, third edition, 2013.



	Basic time complexity classes
	Hardness of approximation
	Average-case hardness

