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In the previous section, we have introduced some basics about group, ring and field theories. We
start this section 1 by introducing field extension that is fundamental to understand number field. All
things lead to the Galois group in the end, which is interesting in itself as well as gives insights of
cyclotomic number field that is widely used across recent lattice-based cryptography and homomorphic
encryption developments.

0.1 Field extension

The concept of field extensions is fundamental in solving polynomials, especially polynomials with
rational coefficients, denoted by Q[x]. The first attempt to solve these polynomials is to find their roots
in the field of rationals Q. For some rational (coefficient) polynomials, however, their roots only exist
beyond Q. For example, the polynomial x2 − 2 has two irrational roots ±

√
2. For this reason, we need

to construct a field that is larger than Q so that it includes all roots of the polynomial x2− 2, but not too
large that includes many unnecessary values. To achieve this goal, we first define extension fields.
Definition 0.1.1. If a field F is contained in a field E, then E is called an extension field of F .

If E is an extension (field) of F , then F is a subfield of E. This pair of fields is called a field
extension and denoted by E/F .Field extension

For the above example x2 − 2, we can adjoin to Q the roots of this polynomial to get a larger field
that includes all the roots of x2 − 2, denoted by Q(±

√
2) := {a± b

√
2 : a, b ∈ Q}. Note that since an

extension field is also a field, it is sufficient to adjoin only
√
2. Being a field also implies the extension

Q(
√
2) includes more elements such as 1 +

√
2, 5
√
2 and so on.

F -vector space Given a field extension E/F , the larger field E forms a vector space over F , which is also known
as an F -vector space. The larger field E consists of the “vectors” in the vector space and the smaller
field F consists of the scalars for multiplying with the vectors. For example, Q(

√
2) forms a Q-vector

space, because the extension Q(
√
2) is closed under addition (satisfying commutativity, associativity,

additive identity and inverse) and scalar multiplication with Q (satisfying compatibility, scalar identity
in Q, distributivity of scalar multiplication w.r.t. scalar addition in Q or addition in Q(

√
2)).

Field extension
degree Since an extension forms a vector space over the base field, it makes sense to talk about the degree

of an extension.
Definition 0.1.2. Give a field extension E/F , the degree of the extension field E, denoted by [E : F ],
is the dimension of the vector space formed by E over F .

An extension E is finite if its degree is finite. Otherwise, it is infinite. There are at least two ways
of counting the dimension of an extension. One way is through the degree of the minimal polynomial
of a primitive element that generates the extension. This will be discussed in more detail in subsequent
subsections.

The other way of counting the dimension of the extension field is by counting the number of linearly
independent vectors in its basis (same as for vector spaces in linear algebra). Hence, one could specify
a basis of the extension over the base field in order to get the degree of the extension. For example, the
degree [Q(

√
2) : Q] = 2, [Q(

√
2,
√
3) : Q] = 4, [C : R] = 2 because the corresponding basis for each

extension field is {1,
√
2}, {1,

√
2,
√
3,
√
6}, {1, i} respectively.

Similar to Lagrange’s theorem in group theory, the degrees of extensions follow the “Tower Law”.
Proposition 0.1.3. (The Tower Law) If L/M and M/K are field extensions (finite or infinite), then the
degrees of the extensions satisfy

[L : K] = [L :M ][M : K].

Intuitively, L forms a M -vector space and M forms a K-vector space, so L also forms a K-vector
space. Each dimension in L over M is again a [M : K]-dimensional vector space.

The following subsections introduce some special types of field extensions that eventually lead to
Galois extensions and Galois groups.

1This section is part of the work A Tutorial Introduction to Lattice-based Cryptography and Homomorphic
Encryption by the authors Yang Li, Kee Siong Ng, Michael Purcell from the School of Computing, Australian
National University @2022.
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0.1.1 Algebraic extension

Historically, solving mathematical equations with rational coefficients was a natural but challenging
task. This lead to the definition of algebraic numbers that are roots of non-zero rational polynomials.
More formally,

Algebraic
number Definition 0.1.4. A complex number is algebraic (over the rationals Q) if it is a root of a non-zero

polynomial whose coefficients are rational numbers. That is, r ∈ C is an algebraic number if it satisfies
f(r) = 0 for some non-zero polynomial f(x) ∈ Q[x].

All rational numbers are algebraic because they can be written in a linear equation x − r for all
r ∈ Q. The irrational number

√
2 is algebraic because it is a root of x2 − 2. The complex number i is

also algebraic because it is a root of x2+1. Complex numbers that are not algebraic are called transcen-
dental. In other words, transcendental numbers are not roots of any rational coefficient polynomials.
For example, the number π or e.

Almost all real numbers are not algebraic. The set of real numbers is uncountable, but the set of
algebraic numbers are countable. That is, there is a one-to-one correspondence between all the algebraic
numbers and the natural numbers.

When developing cryptosystems, we almost always work with integer (coefficient) polynomials
Z[x]. Within Z[x], monic polynomials are of special interest due to their computational efficiency. A
polynomial is monic if the coefficient of its leading term (i.e., the term with the highest degree) is one.
For example, when dividing polynomials, it is convenient to work with integer polynomials with leading
coefficient one. In most cases, we work with polynomials defined over a field (e.g., Zp[x] for prime p),
so even if it is not monic, it can always made monic by dividing its coefficients with the leading term’s
coefficient.

Algebraic
integer Definition 0.1.5. A complex number is an algebraic integer if it is a root of a monic polynomial with

integer coefficients.

Algebraic integers are generalization of ordinary integers which we call rational integers. Similar to
numbers, field extensions can be algebraic or transcendental too.

Algebraic
extension Definition 0.1.6. A field extension E/F is algebraic if every element in the extension field E is alge-

braic.

Since all rational numbers are algebraic, a field extension Q(α) is algebraic if all the additional
elements are algebraic.

All transcendental extensions are of infinite degree. For example, the transcendental extensionQ(π)
has a basis {1, π, π2, π3, . . . } of infinite linearly independent vectors. The above statement also implies
that all finite extensions are algebraic. This is also proved in the following proposition.
Proposition 0.1.7. Every finite extension is algebraic.

Proof. Let E be an extension over F with a finite degree [E : F ] = n. For an element x ∈ E, the
elements 1, x, x2, . . . , xn ∈ E because E is a field. These n+1 elements are also in the n-dimensional
vector space over F , so must be linear dependent. Hence, there exists a set of non-zero coefficients
{a0, . . . , an} such that 1 + a1x+ a2x

2 + · · ·+ anx
n = 0. This implies that x is algebraic.

Algebraic
closed Definition 0.1.8. A field F is algebraically closed if for any polynomial f(x) ∈ F [x], all of its roots

are in the field F .

Obviously Q and R are not algebraically closed, but C is. This is the Fundamental Theorem of
Algebra. It implies that all polynomials can be completely solved or factored into linear factors in the
complex field C.

As mentioned earlier, given a field extension Q(r)/Q, another way of identifying the degree of
the extension is by identifying the degree of the minimal polynomial of r over Q. To finish off this
subsection, we define what minimal polynomial is.
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Definition 0.1.9. A polynomial f(x) ∈ F [x] is reducible over the field F if it can be factored into
polynomials with smaller degrees. Otherwise, it is irreducible.Irreducible

polynomial Example 0.1.10. Given the following polynomials over the field of rationals Q:

f1(x) = x2 + 4x+ 4 = (x+ 2)(x+ 2),

f2(x) = x2 − 4 = (x+ 2)(x− 2),

f3(x) = 9x2 − 3 = (3x+
√
3)(3x−

√
3),

f4(x) = x2 + 1 = (x+ i)(x− i),
the polynomials f1(x) and f2(x) are reducible over Q whilst the other two are irreducible over Q.
The polynomials f3(x) and f4(x) are reducible over R and C, respectively. The polynomial f4(x) is
irreducible over R.

Theorem 0.1.11. Let p be a prime and f(x) ∈ Fp[x] be a monic irreducible polynomial of degree n.
The quotient ring Fp[x]/f(x) is a field of order pn. (Each polynomial in Fp[x]/f(x) has coefficients
taken from the field Fp and the polynomial degree is at most n− 1.)

Proof. Each coset in the quotient ring Fp[x]/f(x) has the form a0 + a1x + · · · + an−1x
n−1, where

ai ∈ Fp. So there are pn different cosets. The polynomial f(x) is irreducible implies the quotient ring
is also a field.

Definition 0.1.12.Minimal
polynomial

Let E/F be a field extension. If r is algebraic over F , its minimal polynomial over
F is the irreducible monic polynomial f(x) ∈ F [x] of the least degree satisfying f(r) = 0.

It is necessary for r to be algebraic, for otherwise it is not a root of any polynomial in F [x].
Uniqueness Note the minimal polynomial of an algebraic number over a base field is unique up to scalar multi-

plication. A simple argument is as the following. Let Jr = {f(x) ∈ F [x] | f(r) = 0} be the set of all
polynomials in F [x] where r is a root, then Jr is an ideal of the polynomial ring F [x] (easy to verify).
Let p, q ∈ Jr be two monic polynomials of least degree n > 0, then p− q ∈ Jr because Jr is an ideal.
Also p − q has degree less than n because p, q are monic. This contradicts with p, q being least degree
polynomials in Jr, unless p = q.

For different base fields, the minimal polynomial of a number could be different. Here is an example.
Given the field extension R/Q, the minimal polynomial of

√
2 over Q is x2−2 because this polynomial

is monic, irreducible and has the least degree over the base field Q where
√
2 is a root. However, in the

field extension R/R, the minimal polynomial for
√
2 is x−

√
2.

The degree of an extension E = F (r) is the degree of the minimal polynomial of r over F . This is
formally proved by Theorem 0.1.14 in the next subsection. In the above example, the degree [Q(

√
2) :

Q] = 2, because the minimal polynomial of
√
2 over Q is x2 − 2.

0.1.2 Simple extension
Simple

extension Definition 0.1.13. An extension field E over F is simple if there exists an element r ∈ E with E =
F (r).

The simple extension F (r) is the smallest extension over F that contains F and r. The number r
can be either transcendental or algebraic, but we are only interested in algebraic simple extensions.

In the previous section, we mentioned that if r is an algebraic number over the base field F then
its unique minimal polynomial p(x) always exists. In addition, since p(x) is irreducible over F , the
principal ideal 〈p(x)〉 is also maximal in F [x]. This gives us a way of building the extension field F (r)
from the polynomial ring F [x] using the principal ideal by Proposition ?? as stated in the following
theorem.

Theorem 0.1.14. LetE/F be a field extension and r ∈ E be an algebraic number over F with minimal
polynomial p(x) ∈ F [x] of degree n, then

1. F (r) ∼= F [x]/〈p(x)〉.
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2. {1, r, r2, . . . , rn−1} is a basis of the vector space F (r) over F .

3. [F (r) : F ] = deg(p).

The first part of Theorem 0.1.14 is a direct consequence of the First Isomorphism Theorem (The-
orem ??). An important observation as stated in the following corollary of the above theorem is that
if two algebraic numbers have the same minimal polynomial, then the simple extensions generated by
them are isomorphic. This tells us that simple algebraic extension of an algebraic number is unique.
Corollary 0.1.15. Let E/F be a field extension. If two algebraic numbers α, β ∈ E over F have the
same minimal polynomial in F [x], then there is an isomorphism φ : F (α)→ F (β) with φ|F = I .

0.1.3 Splitting field

One way of building the smallest field extension for solving a polynomial is to look at the splitting field
of the polynomial.

Solving a degree n polynomial f(x) ∈ F [x] for its roots can be done by rewriting it as the product
of linear factors in an appropriate extension field E. That is,

f(x) = c

n∏
i=1

(x− ai),

where c ∈ F is a constant and x− ai ∈ E[x] is a linear factor. This rewriting process is also known as
splitting a polynomial.
Definition 0.1.16. Let F be a field and f(x) ∈ F [x] be a polynomial. The extension fieldE is a splitting
fieldSplitting field of f(x) over F if

• f(x) splits over E and

• if F ⊆ L ( E, then f(x) does not split over L.

By definition, a splitting field of f(x) is the smallest extension that contains all the roots of f(x).
Alternatively, we say that the extensionE is generated by the roots of f(x). That is, if r1, . . . , rn are the
roots of f(x) and E is the splitting field of f(x) then E = F (r1, . . . , rn). For example, the extension
Q(
√
2) is the splitting field of x2 − 2 ∈ Q[x], because the polynomial splits into (x+

√
2)(x−

√
2) in

it. But C is not a splitting field of x2 − 2, because it is not the smallest.

The following theorems state that the splitting field of a polynomial always exists and is unique up
to isomorphism.

Existence
Theorem 0.1.17. (Existence) Let F be a field and f(x) ∈ F [x] be a polynomial of degree n > 0. Then
there exists a splitting field K of f(x) over F with degree [K : F ] ≤ n!.

The construction of a splitting field can be done by taking the quotient of F [x] with the principle
ideal 〈f(x)〉 where f(x) is irreducible. If it is reducible, we can factor it into irreducible factors and
take the same process repeatedly until f(x) splits.

Uniqueness
Theorem 0.1.18. (Uniqueness) Let φ : F → E be an isomorphism, f(x) ∈ F [x] be a polynomial and
φ(f(x)) ∈ E[x] be the corresponding polynomial in E[x]. If K and L are the splitting fields of f(x)
and φ(f(x)) over F and E respectively, then φ extends to an isomorphism K ∼= L.

0.1.4 Normal extension

Sometimes we prefer to work with an algebraic extension that includes all the roots of a polynomial, so
that we do not need to adjoin more roots to the extension. For this purpose, we define the following.

Normal
extension Definition 0.1.19. An algebraic extension E over F is normal if whenever an irreducible polynomial

over F has a root in E, then it splits in E.

From splitting field, we know that an extension is normal if whenever it contains one root of a
polynomial, it contains all roots of the polynomial. The most important result about normal extension
is its connection with splitting field.
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Normal iff
splitting Theorem 0.1.20. A finite algebraic extension E over F is normal if and only if it is the splitting field of

some polynomial f(x) ∈ F [x].

The theorem implies that if E is the splitting field of one polynomial over F , then it is the splitting
field of every other polynomial over F with one root in E.

0.1.5 Separable extension

In addition to normal extensions, it is also convenient when a polynomial has distinct roots, so we do
not need to worry about duplicated roots. This is especially the case when working with Galois groups
that consist of automorphisms between polynomial roots. Before introducing separable extensions, we
define what it means for a polynomial to be separable and how separability can be tested.

Separable
polynomial Definition 0.1.21. A polynomial over a field F is separable if the number of its distinct roots in a

splitting field is equal to the degree of the polynomial.

Example 0.1.22. The polynomial x2−2 has two distinct roots±
√
2, so it is separable. The polynomial

(x2 − 1)2 is not separable, because both roots ±1 have multiplicity 2.
Test

separability One way of testing separability is to check whether or not a polynomial is coprime with its formal
derivative2.
Lemma 0.1.23. A polynomial f(x) ∈ F [x] is separable if and only if gcd(f, f ′) = 1.

Proof. Let K be the splitting field of f(x) and r ∈ K is a root of f(x). The re-write the polynomial as

f(x) = (x− r)mg(x)
with m ≥ 1 and g(r) 6= 0. Take the formal derivative, we get

f ′(x) = m(x− r)m−1g(x) + (x− r)mg′(x) = (x− r)m−1[mg(x) + (x− r)g′(x)].
Evaluating the second factor mg(x) + (x − r)g′(x) at r gives mg(r) + 0 = 0 ⇐⇒ m = 0 because
g(r) 6= 0.

If f(x) is separable, by definition m = 1 and f ′(x) = g(x) + (x− r)g′(x). So f ′(r) 6= 0 and none
of the two factors of f(x) divides f ′(x). This implies they are coprime.

If f(x) is not separable, then m > 1 and f ′(r) = 0. Hence, x − r is a common factor of f and f ′,
so they are not coprime.

Example 0.1.24. In the examples above, f(x) = x2 − 2 is separable, because its formal derivative
f(x)′ = (x2 − 2)′ = 2x and gcd(f, f ′) = 1. If f(x) = (x2 − 1)2, then its formal derivative
f ′(x) = ((x2 − 1)2)′ = 4x(x2 − 1) and gcd(f, f ′) = x2 − 1, so the polynomial (x2 + 1)2 is not
separable.

Separable
extension Definition 0.1.25. An algebraic extension E over F is separable if for every element α ∈ E, its

minimum polynomial over F is separable.

The Fundamental Theorem of Galois Theory states a correspondence between intermediate field
extensions and subgroups of a Galois group. Hence, we would like to know the separability of the
intermediate field extensions between a base field and a separable extension.

Intermediate
extensions are

separable
Theorem 0.1.26. Given field extensionsL/M/K. IfL/K is separable, then the intermediate extensions
L/M and M/K are also separable.

char(F ) =
0 =⇒

separable

In the previous section, we stated that a field characteristic is either 0 or a prime. The following
results connect the characteristic of a polynomial to its separability.
Theorem 0.1.27. Every irreducible polynomial over a field of characteristic zero is separable, and
hence every algebraic extension is separable.

2Formal derivative is similar to derivative in calculus, but for elements of a polynomial ring.
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Proof. Let E/F be a field extension with char(F ) = 0, and f(x) ∈ F [x] be the minimal polynomial
of α ∈ E over F . Assuming f(x) is not separable. That is, without loss of generality, there is a root
β with multiplicity 2. Then f(β) = 0 and its formal derivative f ′(β) = 0, because f(x) has a factor
(x− β)2, which becomes 2(x− β) in f ′(x).

However, f ′(x) does not have zero coefficients, because it is over a field of zero characteristic. The
fact that f(x) is a minimal polynomial implies it is irreducible, and f ′(x) has a lower degree than f(x)
imply that gcd(f, f ′) = 1. Hence, there are a, b ∈ F [x] such that af(x) + bf ′(x) = 1. Substituting
x = β, we get a contradiction, so f(x) cannot be non-separable. Hence, every irreducible polynomial
over F is separable. This implies every algebraic extension is separable and every finite extension is
also separable because every finite extension is algebraic by Proposition 0.1.7.

A similar but more general result is the following theorem.
Theorem 0.1.28. Let f ∈ F [x] be an irreducible polynomial of degree n. Then f is separable if either
of the following conditions is satisfied:

• the field F has characteristic 0 or

• the field F has characteristic p where p is prime and p - n.

The same argument can be used here to prove the second condition. Since f(x) is a degree n
polynomial, its formal derivative f ′(x) much contain a term nanx

n−1, in which the coefficient nan 6= 0
in the field F as char(F ) = p is prime and p - n. So gcd(f, f ′) = 1 and the same contradiction can be
reached is f(x) is assumed to be non-separable.

The intuition behind both theorems is that if the characteristic of the field F does not satisfy ei-
ther condition, then the coefficients of f ′(x) may be all zero. So f ′(x) = 0 cannot lead to the same
contradiction when assuming f(x) non-separable.

0.2 Galois extension and Galois group

In the preceding subsections, we have defined different types of field extensions, finite, algebraic, sim-
ple, normal and separable. This section will connect some of these extensions to an important field
extension, called Galois extension and will define the Galois groups of Galois extensions.

Group action To start with, we introduce group action on a set. One way to define a group action on a set is by the
following definition.
Definition 0.2.1. A group (G, ∗) acts on a set S if there is a map

µ : G× S → S

such that

• for all s ∈ S, we have µ(e, s) = s,

• for all x, y ∈ G and s ∈ S, we have µ(x ∗ y, s) = µ(x, µ(y, s)).

For simplicity, we write µ(x, s) as x(s). Another way of defining group action is by a group homo-
morphism.
Definition 0.2.2. A group G acts on a set S if there is a homomorphism

φ : G→ Sym(S)

from the group to the symmetric group (or the permutation group Perm(S)) of S.

In this case, we say φ is the group action of G on S. Each element of G is mapped to a certain
permutation of the set S by the action. For example, when the Dihedral group

D4 = 〈r, f〉 = {e, r, r2, r3, f, fr, fr2, fr3)
acts on itself, each element in D4 is mapped to a certain permutation of the set S = D4. For example,
the elements rotation r and reflection f correspond to the following permutations of D4

r : {e, r, r2, r3, f, fr, fr2, fr3) 7→ {r, r2, r3, e, rf = fr3, rfr = f, rfr2 = fr, rfr3 = fr2)

f : {e, r, r2, r3, f, fr, fr2, fr3) 7→ {f, fr, fr2, fr3, e, r, r2, r3).
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The action of D4 only gives rise to certain permutes of D4. In other words, there are 8 elements in D4

and the symmetric group has size |Perm(D4)| = 8!, the homomorphism φ is injective, which we call
faithful as stated next.

Faithful action
Definition 0.2.3. A group action φ of G on a set S is faithful if φ is injective. That is, for every two
distinct elements g, h ∈ G, there exists an element s ∈ S such that g(s) 6= h(s).

If a group action is faithful, then we can think the group G embeds into the permutation group of S,
as in the above example of D4, where each element of G = D4 corresponds to a certain permutation of
the set S = D4.

Similarly, we can define a group G acts on a ring R (or a field F ). The difference is that a ring
has more algebraic structures than a set, so simple permutations of the ring elements do not necessarily
preserve the ring structure. For this reason, we replace permutations by automorphisms, which are
bijective ring homomorphisms between R and itself. Let Aut(R) be the automorphism group of R.
Definition 0.2.4. An action of a group G on a ring R is a group homomorphism

φ : G→ Aut(R).
Fixed field Some elements in the ring R or field F stay invariant under the action. They make up the fixed field.

Definition 0.2.5. Given a field extension E/F and a group action of G on E, the fixed field of E under
the action of G

EG = {a ∈ E | g(a) = a,∀g ∈ G}.
is the set of elements in the extension field that are fixed point-wise by all automorphisms of R.

Automorphism
group Definition 0.2.6. Let E/F be a field extension. The automorphism group of the field extension

Aut(E/F ) = {α ∈ Aut(E) | α(x) = x, ∀x ∈ F}
= {α ∈ Aut(E) | αF = IdF }

is the set of automorphisms that fixes F when acting on E.

The automorphism group is a group with function composition as the group operator. It is a subgroup
of the group of automorphisms ofE, i.e.,Aut(E/F ) ⊆ Aut(E). Now, we are ready to define the Galois
group of a field extension.
Definition 0.2.7. The Galois group of a field extension E/F , denoted by Gal(E/F ), is the automor-
phism group of the field extension.Galois group That is,

Gal(E/F ) := Aut(E/F ) = {α ∈ Aut(E) | αF = IdF }.

By definition, the Galois group is a subset of the automorphism group or permutation group (or
symmetric group) of the extension E.

As explained in the previous section that an extension field can be viewed as a vector space over the
base field, so when working with Galois groups, instead of thinking where all elements in the extension
are mapped to, it is convenient to know where the basis vectors are mapped to by the automorphisms.

Let us work through some simple examples.
Example 0.2.8. Let the field extension be Q(

√
2)/Q. It is a 2-dimensional Q-vector space with a basis

{1,
√
2}. The Galois group must fix the base field, so it contains the identity map I . In addition, it

should contain another automorphism σ that maps
√
2 to another element a in the extension whiling

fixing Q. Since σ is an automorphism, it must satisfy a2 = σ(
√
2)2 = σ((

√
2)2) = σ(2) = 2. So

whatever σ(
√
2) = a is, it must satisfy a2 − 2 = 0 in the extension, which means a = ±

√
2. Since the

identity map is already included, it entails σ(
√
2) = −

√
2. Hence, the Galois group Gal(Q(

√
2)/Q) =

{I, σ :
√
2 7→ −

√
2} ∼= C2 which is isomorphic to the cyclic group of order 2.

Example 0.2.9. Let the field extension be Q(
√
2, i)/Q. This is a 4-dimensional Q-vector space with a

basis {1,
√
2, i,
√
2i}. The minimal polynomials over Q for

√
2 and i are x2−2 and x2+1, respectively.

The Galois group of the field extension contains all the automorphisms that fix Q while permuting roots
in each minimal polynomial. That is, it contains a map τ that permutes {

√
2,−
√
2} and a map σ

that permutes {i,−i}. We can identify these automorphisms as shown in Table 1. The Galois group is
isomorphic to the Klein four group V4 = C2 × C2.
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1
√
2 i

√
2i

I 1
√
2 i

√
2i

σ 1
√
2 −i −

√
2i

τ 1 −
√
2 i −

√
2i

στ 1 −
√
2 −i

√
2i

Table 1: The Galois group of the extension Q(
√
2, i). It is isomorphic to the Klein four group V4 =

C2 × C2.

It is important to note that not all automorphisms (or permutations) that fix the base field are in
the Galois group. From the above two examples, we can see that the Galois group only contains those
automorphisms that permute roots of the same minimal polynomial while fixing the base field. In
Example 0.2.9,

√
2 and −

√
2 come from the minimal polynomial x2 − 2 in Q and i and −i come from

the minimal polynomial x2 + 1 in Q. Let us take a look at a counter example.

Example 0.2.10. Let the field extension be Q(
√
2,
√
3)/Q. The permutation φ :

√
2 7→

√
3 is not

in the Galois group. Assuming it is, then φ(
√
2) =

√
3 implies φ(

√
2)2 = 3. By the definition of

homomorphism, φ(
√
2)2 = φ(

√
2
2
) = φ(2) = 2 because φ fixes Q. This implies 2 = 3.

Example 0.2.11. A slightly more complicated example is with a field extension Q( 4
√
2, i)/Q. The roots

4
√
2 and i have the minimal polynomials x4 − 2 and x2 + 1 over Q, respectively. The polynomial

x4 − 2 has four roots ± 4
√
2 and ±i 4

√
2. The polynomial x2 + 1 has two roots ±i. The Galois group

should contain automorphisms that permutes roots for each polynomial. The process of finding the
automorphisms is more or less trial and error.3 Let

σ(
4
√
2) = i

4
√
2 and σ(i) = i,

τ(i) = −i and τ( 4
√
2) =

4
√
2.

Then we have

σ2(
4
√
2) = − 4

√
2 and σ2(i) = i,

σ3(
4
√
2) = −i 4

√
2 and σ3(i) = i,

σ4(
4
√
2) =

4
√
2 and σ4(i) = i,

τ2(i) = i and τ2( 4
√
2) =

4
√
2.

So the orders of σ and τ in the Galois group are 4 and 2, respectively. Hence, the Galois group is
{I, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}.

Combining the definitions of fixed field and Galois group, we know that for a field extension E/F ,
the fixed field by the Galois group should at least contain the base field F . Because all automorphisms
in the Galois group at least fix F , though they may fix more than F . Hence, we can define what it means
for a field extension to be Galois.

Galois
extension Definition 0.2.12. A field extension E/F is an Galois extension if the fixed field by the Galois group

Gal(E/F ) is exactly F . That is, EGal(E/F ) = F .

In other words, the Galois group has to fix exactly the base field, nothing more nothing less. An
important theorem that characterizes Galois extension using previously defined extension types is the
following.

Normal and
separable =⇒

Galois
Theorem 0.2.13. An algebraic field extension is a Galois extension if it is normal and separable.

This theorem says that for an algebraic field extension to be a Galois extension, any polynomial that
has a root in the extension must have all its roots in the extension and these roots must be all distinct. The
requirement of being normal and separable is a sufficient condition for a field extension to be Galois.

3Perhaps there are better ways of finding the Galois group, but they are not in the scope of this material.

8



A PREPRINT - JUNE 19, 2022

Example 0.2.14. The Galois groupGal(Q( 3
√
2)/Q) = {I} contains only the identity map. If φ( 3

√
2) =

a is another automorphism, then it must satisfy a3 − 2 = 0. So φ must map 3
√
2 to a root of the minimal

polynomial a3 − 2 = 0 in the extension. But the only root that is in the extension is 3
√
2, because

the other two roots are complex. So φ is the identity map. Given the Galois group contains only the
identity map, the fixed field is Q( 3

√
2) not Q, so the field extension is not Galois. By Theorem 0.2.13, the

extension is not both normal and separable. In fact, this is true, because the extension does not contain
the two complex roots of the minimal polynomial x3 − 2.

The example suggests that a field extension can have a Galois group, but it is not necessarily a Galois
extension.

Since a Galois extension is normal and separable, we would expect the number of automorphisms
in the Galois group to be related to the number of roots of a minimal polynomial. The next lemma
connects the number of automorphisms in the Galois group to the degree of a Galois extension.

Lemma 0.2.15. If a finite field extension E/F is Galois, then the number of elements in the Galois
group is the degree of the field extension. That is, |Gal(E/F )| = [E : F ].

For example, the field extensionQ(
√
2, i)/Q has degree 4 (as it is a 4 dimensional vector space over

Q) and there are 4 automorphisms in the Galois group as stated in Table 1.

The next theorem is the most important theorem in Galois Theory. It builds a connection between
subgroups of a Galois group and field extensions of a base field. The theorem is important in the sense
that it provides a way of understanding field extensions from group’s perspective, which is relatively
well studied. In the most basic form, it states that if L/M/K is a finite Galois extension, then there
is a one-to-one correspondence between an intermediate extension and a subgroup of the Galois group
Gal(L/K). The next theorem explicitly defines what it means for a one-to-one correspondence between
the two different algebraic structures.

L

M

K

⊆
⊆

(a) A finite Galois extension.

GL = Gal(K/K)

GM = Gal(M/K)

GK = Gal(L/K)

⊆
⊆

(b) Subgroups of the Galois group GK =
Gal(L/K).

Figure 1: A finite Galois extension and the corresponding Galois groups.

Fundamental
Theorem of

Galois Theory
Theorem 0.2.16. (Fundamental Theorem of Galois Theory) Suppose L/M/K is a finite Galois exten-
sion with the corresponding Galois group GK = Gal(L/K).

1. There is an inclusion reversing correspondence between an intermediate field M of L/K and
a subgroup GM ⊆ GL given as follows:

M → GM = {φ ∈ Aut(L) | φM = IdM}
GM → LGM =M.

2. The degrees of the field extensions are given by

[L :M ] = |GM | and [M : K] =
|GK |
|GM |

.
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3. The intermediate field extension M/K is Galois if and only if GM /GK is a normal subgroup.
In this case, the corresponding Galois group is given by

Gal(M/K) ∼= GK/GM .

The first point of the theorem says that if M is an intermediate extension between L/K, then M
corresponds to the set of automorphisms of L that fixes M . If M = K, then M corresponds to the set
of automorphisms of L that fixes K, which is the entire Gal(L/K). If M = L, then M corresponds to
the set of automorphisms of L that fixes L, which is identity map.

The second point says the degree of the M -vector space L equals the number of automorphisms of
L that fix M . If M = K or M = L, then the degrees [L : M ] = [L : K] = |GK | = Gal(L/K) or
[L : M ] = [L : L] = |GL| = 1, respectively. Combining the two qualities, we get [L : M ][M : K] =
|GK | = [L : K] which is consistent with the Tower Law in Proposition 0.1.3.

Q(ω, θ)

Q(ω)

Q(θ) Q(ωθ) Q(ω2θ)

Q

(a) A finite Galois extension and the intermediate ex-
tensions.

{I}

{I, σ, σ2}
{I, τ} {I, στ}{I, σ2τ}

{I, σ, σ2, τ, στ, σ2τ}
(b) Subgroups of the Galois group Gal(Q(ω, θ)/Q).

Figure 2: A finite Galois extension Q(ω, θ)/Q and the corresponding Galois groups, where ω = −1
2 +

i
√
3
2 and θ = 3

√
2. Each structure is a lattice and there is a one-to-one correspondence between them.

Example 0.2.17. Let the field extension be Q(θ, ω)/Q, where θ = 3
√
2 and ω = −1

2 ± i
√
3
2 . The exten-

sion is a 6-dimensional Q-vector space with a basis {1, θ, θ2, ω, θω, θ2ω}. Define the automorphisms

σ(θ) = ωθ and σ(ω) = ω,

τ(θ) = θ and τ(ω) = ω2.

The two automorphisms in the Galois group have orders 3 and 2, respectively. It can be seen that they
can make the entire Galois group {I, σ, σ2, τ, στ, σ2τ}. The intermediate field extensions from Q to
Q(ω, θ) are shown in Figure 1a. The extension Q(ω) can be extended to Q(ω, θ) by adjoining θ and the
other three extensions can be extended to Q(ω, θ) by adjoining ω. The corresponding subgroups of the
Galois group are shown in Figure 1b.

The two structures are lattices. According to the Fundamental theorem of Galois Theory, they are
in one-to-one correspondence. The automorphisms that fix Q(ω) are {I, σ, σ2}. The degree of the
intermediate extension Q(ω) is [Q(ω, θ) : Q(ω)] = 3, because Q(ω, θ) has a basis {1, θ, θ2} over the
field Q(ω). Also, [Q(ω, θ) : Q] = [Q(ω, θ) : Q(ω)][Q(ω) : Q] = 3 · 2 = 6. The normal extensions are
Q, Q(ω) and Q(ω, θ) because the corresponding subgroups {I, σ, σ2, τ, στ, σ2τ}, {I, σ, σ2} and {I}
are normal subgroups of the Galois group {I, σ, σ2, τ, στ, σ2τ}.
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